

October 26, 2021

Tom Wolsey, CEO/CZO Al Yager, Town Engineer Town of Lysander 8220 Loop Road Baldwinsville, NY 13027

Via Email: zoning@townoflysander.org; engineer@townoflysander.org;

Re: T-Mobile Modification at 2846 BELGIUM ROAD (Site #30NS014B)

Greetings:

T-Mobile proposes to upgrade certain equipment to support its network. As part of this effort, T-Mobile will need to perform work at the above referenced Property, which includes a 20' tower extension. There will be no lease area expansion or compound expansion; all ground equipment is going inside existing shelter/cabinets. We are submitting this application as an eligible facilities request under Section 6409 of the Federal Middle Class Tax Relief and Job Creation Act ("Section 6409") as adopted in 2012.

Please find attached the following:

- Building Permit Application
- Wireless Telecommunications Special Use Permit Application
- Stamped Construction drawings
- Structural Analysis
- Certificates of Insurance; Liability, WC 105.2 and DB 120.1
- Checks in the amount of \$2,500 for application fee and \$2,500 escrow deposit for permit review will be transmitted via mail. Please advise if any additional documentation or fees are required.

Under Section 6409, your town retains discretionary zoning review over the construction of *new* towers, but simple collocations and/or equipment upgrades at existing telecommunications facilities must be approved. The law provides that:

"a State or local government may not deny, and shall approve, any eligible facilities request for a modification of an existing wireless tower or base station that does not substantially change the physical dimensions of such tower or base station."

The federal law defines an "eligible facilities request" as "(A) collocation of new transmission equipment; (B) removal of transmission equipment; or (C) replacement of transmission equipment."

The Federal Communications Commission issued a Wireless Infrastructure Report and Order on October 17, 2014 ("FCC Order") which established regulations that clarify and streamline the municipal approval process for eligible facilities requests under Section 6409. The FCC Order clarifies that municipal review of an eligible facilities request is **limited to determining whether the request falls within Section 6409:**

"a State or local government may require the applicant to provide documentation or information only to the extent reasonably related to determining whether the request meets the requirements of this section [Section 6409]. A State or local government may not require an applicant to submit any other documentation, including but not limited to documentation intended to illustrate the need for such wireless facilities or to justify the business decision to modify such wireless facilities."47 C.F.R. 1.40001(c)(1)

The FCC Order also specifies that the term "base station" includes any structure that "supports or houses" communications equipment. Since this structure already supports communications equipment, it is considered a "base station" under Section 6409.

T-Mobile's Application is an Eligible Facilities Request under Section 6409

T-Mobile's application qualifies as an eligible facilities request under Section 6409 because the proposed installation involves "a modification of an existing wireless tower or base station that does not substantially change the physical dimensions of such tower or base station."

T-Mobile's installation will consist of a 20' tower extension and modification within the existing compound (see enclosed plans). Accordingly, this installation involves the collocation of new transmission equipment including a 20' extension on this existing facility. As a result, the installation "does not substantially change the physical dimensions of such tower or base station." Therefore, these proposed equipment upgrades constitute an "eligible facilities request" under Section 6409, and must be approved.

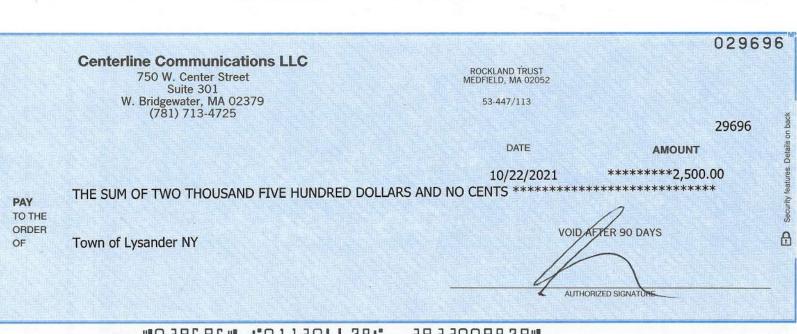
Timeline for Review and Approval

We would like to highlight an important timing requirement for processing this application. The FCC Order determined that a municipality must act on an eligible facilities request within sixty (60) days of receiving the application. 47 C.F.R. 1.40001(c)(2) (Emphasis added). (Note, the sixty (60)-day period is also known as the "Shot Clock"). Thus, the city must approve this application within sixty (60) days of its receipt. The FCC Order provides that upon a municipality's failure to act prior to expiration of the Shot Clock, the "request shall be deemed granted" and T-Mobile will be legally entitled to proceed with construction. 47 C.F.R. 1.40001(c)(4).

Note that the FCC Order does allow the Shot Clock to be tolled if an application is incomplete. However, in order to do so, a municipality must provide <u>written</u> notice that the application is incomplete within thirty (30) days of the submittal. 47 C.F.R. 1.40001(c)(3)(i). The notice must "clearly and specifically" describe the missing documents or information, 47 C.F.R. 1.40001(c)(3)(i), and, as previously mentioned, such documentation must be necessary to the determination of whether the application qualifies as an eligible facilities request. If the municipality requests additional information after the first thirty (30) days have passed, we will still provide any "reasonably related" information allowed under the FCC Order, but the Shot Clock will not be tolled.

In light of the foregoing, T-Mobile respectfully requests that its proposed collocation be approved. Once the permit is issued, please forward via email to me at my email address below.

In the meantime, if you have any questions, or requests, or if anything would assist in your review, please call or email me.


Sincerely,

Jennille A. Smith

Jennille Smith | Site Acquisition Consultant

Phone: 774.409.5807 jsmith@clinellc.com

TOWN OF LYSANDER

Department of Zoning, Planning & Code Enforcement

8220 LOOP ROAD, BALDWINSVILLE, NY 13027 (315)638-1210/FAX: (315)635-1515 BUILDING PERMIT APPLICATION

Instructions:

Submit a plot pan showing location of the lot, buildings, public streets and detailed description of the property or a copy of the survey with 1 set of drawings. Upon approval of this application, the Zoning Department will issue a Building Permit for the work covered by this application which should not be started before issuance of this Permit. No building or any permitted activity shall be occupied or used in whole or in part for any purpose whatsoever until a Certificate of Compliance or a Certificate of Occupancy has been issued by the Zoning Department.

Occupancy has been issued by the Zohing Department.
Applicant General Information:
Scope of Work: New Build Addition X_ Repair/Alteration Pool Fire Place
Project Will Include (check all that apply): Plumbing () Electrical () Highway Permit () Water ()
Location of Proposed Project 2846 BELGIUM RD., BALDWINSVILLE, NY 13027
Tax Map No Lot No
Owner/Agent Name <u>AMERICAN TOWER</u> Telephone <u>774-409-5807</u>
Owner Address, if different 10 PRESIDENTIAL WAY, WOBURN, MA 01801
Contractor BLUEWAVE COMMUNICATIONS INC Telephone 315-484-6453
Contractor Address 801 KIMRY MOON, FAYETTEVILLE, NY 13066
Zoning ClassificationSurvey/Plot Plan
Existing Use or Occupancy CELL TOWER Intended Use or Occupancy NO CHANGE
Insurance –Note:
Any Contractor or Individuals hiring employees shall hold insurance to cover workers' compensation, as
required by New York State Law.
Contractors Liability Insurance: Attached X On File
Workers' Compensation Insurance: Attached \overline{X} On File
Does proposed project violate any zoning or building code NO
Square Foot Estimated Cost \$75,000.00 Fee
Applicant Certification: I hereby certify that this application is true and correct to the best of my
knowledge. That all work done under any resulting permit will comply with the requirements of the
2010 New York State Uniform Fire Prevention and Building Code, the Town of Lysander Zoning Law and
all other applicable regulations. I also understand that the granting of a permit does not give authority
to violate or cancel the provisions of any other laws or regulations. I understand I am responsible to
ensure that the required building inspections are performed by appropriate inspector and have been
approved prior to concealing my work. By signing this application I agree to allow representatives of the
Town of Lysander access to the above referenced property at reasonable times for the purpose of
obtaining information relevant to the processing of this application and to ascertain compliance with
any resulting permit.
SIGNATURE OF OWNER/AGENT JENNILLE SMITH DATE 10/26/2021
OFFICE USE ONLY:
Paid Date Permit No
Approved Disapproved

TOWN OF LYSANDER

WIRELESS TELECOMMUNICATIONS TOWER SPECIAL USE PERMIT APPLICATION

			vers are applicable.
Otherwise, federal law	vapplies as to Section	n 6409 (see attached	letter).
icant			
Name T-Mobile			
Street Number 103 Mon	arch Drive	Municipality _	Liverpool
State NY Zip Cod			·
erty			
Street Number 2846 BE	LGIUM ROAD	Municipality	LYSANDER
State NY Zip Co	de <u>13027</u>		
Tax Map Number			
Owner (if different than a			
Name <u>AME</u> F	RICAN TOWER		
Address 10 PR	RESIDENTIAL WAY		
	URN, MA 01801		
Zoning District		erlay Control	
Size of Property			
Existing Structures/Uses	(X) Conforming	() Nonconforming	
and Description			
-		the needs that will be a	addressed by the project (Attach
additional pages if necess	ary).		
MOBILE PROPOSES TO	EXTEND THE EXIST	TING TOWER BY 20	'TO MEET ITS COVERAGE
TWORK BEOLIBEMEN	TS. NO CHANGES T	O THE GROUND LE	ASE AREA OR EQUIPMENT
- I WONN INEQUINEIMEN			

Alternatives

Explain in detail why the proposed action cannot be conducted in a manner where a special use permit would not be required. (Attach additional pages if necessary).

BECAUSE A TOWER EXTENSION IS R	EQUIRED TO N	MEET COVERAGE GOALS FOR
APPLICANT, A SPECIAL USE PERMIT	IS BEING REQU	JESTED. ANTENNAS PLACED BELOW
EXISTING CARRIERS WOULD NOT AL	LOW APPLICAN	NT TO MEET ITS COVERAGE
OBJECTIVES. NOTE THAT THE IMPAC		
TOWER. PLEASE SEE THE STRUCTUR	RAL ANALYSIS A	ATTACHED TO SHOW THAT THE
EXISTING STRUCTURE WILL SUPPOR	T THE PROPOS	SED EXTENSION.
Sworn this <u>26</u> day of <u>OCT</u> , 20 <u>21</u>		
	1 <u> </u>	E A CAUTIL
	<u>JENNI LL</u>	E A. SMITH Applicant/Representative Signature
		Applicant/Representative Signature
Notary Public		
Notary Public	JENNI LLE	E A. SMITH
		Owner/Representative Signature
		o when representative signature
Information below to be provided by the	Town of Lysan	der Codes Office
information below to be provided by the	Town of Lysun	del Codes Cilice
Application Number D	Date	Fee
Application Number L		
Review by Onondaga County		Review by Town of Lysander
Planning Board		Board
() Required () Not Required		() Required () Not Required
() required () Not required		() Required () Not Required

CERTIFICATE OF WORKERS' COMPENSATION INSURANCE

^^^^^ 823894960
CH INSURANCE BROKERAGE SRVS CO
THE ATRIUM
100 SOUTH SALINA ST STE 370

SCAN TO VALIDATE AND SUBSCRIBE

POLICYHOLDER

SYRACUSE NY 13202

BLUEWAVE COMMUNICATIONS INC 801 KIMRY MOOR FAYETTEVILLE NY 13066 CERTIFICATE HOLDER 30NS014B//ANCHOR

TOWN OF LYSANDER 8220 LOOP RD BALDWINSVILLE NY 13027

POLICY NUMBER	CERTIFICATE NUMBER	POLICY PERIOD	DATE
S2448 520-3	690644	06/30/2021 TO 06/30/2022	7/8/2021

THIS IS TO CERTIFY THAT THE POLICYHOLDER NAMED ABOVE IS INSURED WITH THE NEW YORK STATE INSURANCE FUND UNDER POLICY NO. 2448 520-3, COVERING THE ENTIRE OBLIGATION OF THIS POLICYHOLDER FOR WORKERS' COMPENSATION UNDER THE NEW YORK WORKERS' COMPENSATION LAW WITH RESPECT TO ALL OPERATIONS IN THE STATE OF NEW YORK, EXCEPT AS INDICATED BELOW, AND, WITH RESPECT TO OPERATIONS OUTSIDE OF NEW YORK, TO THE POLICYHOLDER'S REGULAR NEW YORK STATE EMPLOYEES ONLY.

IF YOU WISH TO RECEIVE NOTIFICATIONS REGARDING SAID POLICY, INCLUDING ANY NOTIFICATION OF CANCELLATIONS, OR TO VALIDATE THIS CERTIFICATE, VISIT OUR WEBSITE AT HTTPS://WWW.NYSIF.COM/CERT/CERTVAL.ASP. THE NEW YORK STATE INSURANCE FUND IS NOT LIABLE IN THE EVENT OF FAILURE TO GIVE SUCH NOTIFICATIONS.

THIS POLICY DOES NOT COVER CLAIMS OR SUITS THAT ARISE FROM BODILY INJURY SUFFERED BY THE OFFICERS OF THE INSURED CORPORATION.

PRESIDENT
MICHAEL A SHEA
BLUEWAVE COMMUNICATIONS INC
ONE OF ONE-PERSON CORPORATION

THE POLICY INCLUDES A WAIVER OF SUBROGATION ENDORSEMENT UNDER WHICH NYSIF AGREES TO WAIVE ITS RIGHT OF SUBROGATION TO BRING AN ACTION AGAINST THE CERTIFICATE HOLDER TO RECOVER AMOUNTS WE PAID IN WORKERS' COMPENSATION AND/OR MEDICAL BENEFITS TO OR ON BEHALF OF AN EMPLOYEE OF OUR INSURED IN THE EVENT THAT, PRIOR TO THE DATE OF THE ACCIDENT, THE CERTIFICATE HOLDER HAS ENTERED INTO A WRITTEN CONTRACT WITH OUR INSURED THAT REQUIRES THAT SUCH RIGHT OF SUBROGATION BE WAIVED.

THIS CERTIFICATE IS ISSUED AS A MATTER OF INFORMATION ONLY AND CONFERS NO RIGHTS NOR INSURANCE COVERAGE UPON THE CERTIFICATE HOLDER. THIS CERTIFICATE DOES NOT AMEND, EXTEND OR ALTER THE COVERAGE AFFORDED BY THE POLICY.

NEW YORK STATE INSURANCE FUND

DIRECTOR INSURANCE FUND UNDERWRITING

CERTIFICATE OF INSURANCE COVERAGE DISABILITY AND PAID FAMILY LEAVE BENEFITS LAW

PART 1. To be c	ompleted by Disability and	d Paid Family Leave	Benefits Carrier	or Licensed Insi	urance Agent of that Carrier
_		ddress only)	1b. Business Telep	bhone Number of II 5-484-6453	nsured
Work Location of I	nsured (Only required if coverage is ew York State, i.e., Wrap-Up Policy)	specifically limited to	1c. Federal Emplo or Social Secu 823		umber of Insured
	oad	f Coverage	3b. Policy Number 11DBL1 3c. Policy effective	surance Compa of Entity Listed in 1074700 period	•
A. Both dis B. Disabilit C. Paid far 5. Policy covers: A. All of th B. Only the	the following benefits: sability and paid family leave ber ty benefits only. mily leave benefits only. e employer's employees eligible e following class or classes of en erjury, I certify that I am an author disability and/or Paid Family Lea	under the NYS Disability pployer's employees: prized representative or	/ and Paid Family Le	eave Benefits Law.	referenced above and that the named
Date Signed	7/8/2021 E	(Signature of insurance	carrier's authorized repre	esentative or NYS Licens	sed Insurance Agent of that insurance carrier)
Telephone Numbe	r 201-743-3937	Name and Title	James	Iannicelli, AVP	Accident & Health
IMPORTANT:	Licensed Insurance Agent of	f that carrier, this cert ked, this certificate is leave Benefits Law. It	ificate is COMPLE NOT COMPLETE must be mailed fo	TE. Mail it direct for purposes of S r completion to the	Section 220, Subd. 8 of the NYS
PART 2. To be	completed by the NYS W	orkers' Compensati	ion Board (Only if	f Box 4C or 5B of P	Part 1 has been checked)
	ormation maintained by the N nd Paid Family Leave Benefi	Workers' Compen	sation Board, the	above-named er	mployer has complied with the
Date Signed	E	Ву	Signature of Authorized N	nyo w	
Telephone Numbe	r	(Name and Title	Signature of Authorized N	งช่อ Workers' Compensa	ation Board Employee)

Please Note: Only insurance carriers licensed to write NYS disability and paid family leave benefits insurance policies and NYS licensed insurance agents of those insurance carriers are authorized to issue Form DB-120.1. **Insurance brokers are NOT authorized to issue this form.**

SITE NAME: BALDWINSVILLE NY SQA

SITE NUMBER: 413161

ATC PROJECT NUMBER: 13544814_C6_05

SITE ADDRESS: 2846 BELGIUM RD

BALDWINSVILLE, NY 13027

LOCATION MAP

100 FT SELF SUPPORT TOWER W/ PROPOSED 20 FT EXTENSION

PROJECT TEAM	PROJECT DESCRIPTION	SHEET	SHEET TITLE	REV.
		G-002	IBC GENERAL NOTES	0
TOWER OWNER	THE PROJECT DEPICTED IN THESE PLANS ARE BASED ON THE RECOMMENDATIONS OUTLINED IN THE STRUCTURAL ANALYSIS COMPLETED	G-003	SPECIAL INSPECTION CHECKLIST	0
AMERICAN TOWER	UNDER ENGINEERING PROJECT NUMBER 13544814_C3_04 DATED 03/25/21. SATISFACTORY COMPLETION OF THE WORK INDICATED IN THESE PLANS WILL	G-004	BILL OF MATERIALS	0
10 PRESIDENTAL WAY	RESULT IN THE STRUCTURE MEETING THE REQUIREMENTS OF THE SPECIFICATIONS UNDER WHICH THE STRUCTURAL WAS COMPLETED.	C-101	DETAILED SITE PLAN	0
WOBURN, MA 01801		S-201	MODIFICATION PROFILE	0
	PROJECT NOTE	S-501	20 FT EXTENSION INSTALLATION DETAILS	0
ENGINEERED BY	THE DRO IFCE DEDICTED IN THESE DLANG CHALIFIES AS AN ELICIDIE	Z-501	20 FT EXTENSION FABRICATION DETAILS	0
ATC TOWER SERVICES	THE PROJECT DEPICTED IN THESE PLANS QUALIFIES AS AN ELIGIBLE FACILITIES REQUEST ENTITLED TO EXPEDITED REVIEW UNDER 47 U.S.C. § 1455(A) AS A MODIFICATION OF AN EXISTING WIRELESS TOWER THAT	Z-502	EXTENSION BRACING FABRICATION DETAILS	0
3500 REGENCY PARKWAY, SUITE 100	INVOLVES THE COLLOCATION, REMOVAL, AND/OR REPLACEMENT OF			
CARY, NC 27518	TRANSMISSION EQUIPMENT THAT IS NOT A SUBSTANTIAL CHANGE UNDER CFR § 1.6100 (B)(7).			
	COMPLIANCE CODE			
CARRIER INFORMATION	COMPLIANCE CODE			
CARRIER: T-MOBILE	ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN			
CARRIER SITE NAME: BVILLE_EAST	ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNMENT AUTHORITIES. NOTHING IN THESE			
CARRIER SITE NUMBER: 30NS014B	PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES.			
	1. ANSI/TIA/EIA: STRUCTURAL STANDARDS (222-H EDITION)			
	2. INTERNATIONAL BUILDING CODE (2018 IBC)			
	3. NEW YORK BUILDING CODE (2020)			
	PROJECT LOCATION			
V	GEOGRAPHIC COORDINATES			
Know what's below. Call before you dig.	LATITUDE: 43.163439			
Can bolol o you dig.	LONGITUDE: -76.311661			

3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: 0012746

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. ITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWER.

REV	. DESCRIPTION	BY	DATE
\triangle	FIRST ISSUE	<u>NYG</u>	05/14/21
\triangle			
$\overline{\wedge}$			
\square			
\square			
-			

ATC SITE NUMBER:

413161

ATC SITE NAME:

BALDWINSVILLE NY SQA

NEW YORK

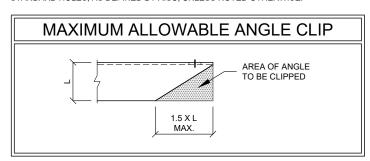
SITE ADDRESS: 2846 BELGIUM RD BALDWINSVILLE, NY 13027

DRAWN BY:	NYG
APPROVED BY:	MER
DATE DRAWN:	05/14/21
ATC JOB NO:	13544814_C6_05

COVER

SHEET NUMBER:

G-001


REVISION:

GENERAL

- ALL WORK TO BE COMPLETED PER APPLICABLE LOCAL STATE FEDERAL CODES AND ORDINANCES AND COMPLY WITH ATC CONSTRUCTION SPECIFICATIONS FOR WIRELESS TOWER SITES. THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING AND ABIDING BY ALL REQUIRED PERMITS
- ALL WORK INDICATED ON THESE DRAWINGS SHALL BE PERFORMED BY QUALIFIED CONTRACTORS EXPERIENCED IN TOWER AND FOUNDATION CONSTRUCTION.
- 3. THE CONTRACTOR SHALL NOTIFY THE ENGINEER OF RECORD IMMEDIATELY OF ANY INSTALLATION INTERFERENCES. ALL NEW WORK SHALL ACCOMMODATE EXISTING CONDITIONS DETAILS NOT SPECIFICALLY SHOWN ON THE DRAWINGS SHALL FOLLOW SIMILAR DETAILS FOR THIS JOB.
- ANY SUBSTITUTIONS SHALL CONFORM TO THE REQUIREMENTS OF THESE NOTES AND SPECIFICATIONS, AND SHOULD BE SIMILAR TO THOSE SHOWN. ALL SUBSTITUTIONS SHALL BE SUBMITTED TO THE ENGINEER OF RECORD FOR REVIEW AND APPROVAL PRIOR TO FABRICATION
- ANY MANUFACTURED DESIGN ELEMENTS SHALL CONFORM TO THE REQUIREMENTS OF THESE NOTES AND SPECIFICATIONS AND SHOULD BE SIMILAR TO THOSE SHOWN. THESE DESIGN ELEMENTS MUST BE STAMPED BY AN ENGINEER PROFESSIONALLY REGISTERED IN THE STATE OF THE PROJECT, AND SUBMITTED TO THE ENGINEER OF RECORD FOR APPROVAL PRIOR TO FABRICATION.
- 6. ALL WORK SHALL BE DONE IN ACCORDANCE WITH LOCAL CODES AND OSHA SAFETY REGULATIONS.
- THE CONTRACTOR IS RESPONSIBLE FOR THE DESIGN AND EXECUTION OF ALL MISCELLANEOUS SHORING, BRACING, TEMPORARY SUPPORTS, ETC. NECESSARY, PER ANSI/TIA-322 AND ANSI/ASSE A10.48. TO PROVIDE A COMPLETE AND STABLE STRUCTURE AS SHOWN ON THESE DRAWINGS.
- CONTRACTOR'S PROPOSED INSTALLATION SHALL NOT INTERFERE, NOR DENY ACCESS TO, ANY EXISTING OPERATIONAL AND SAFETY EQUIPMENT.

STRUCTURAL STEEL

- ALL DETAILING, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AISC SPECIFICATIONS LATEST EDITION
- 2. ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION PER ASTM A123. EXPOSED STEEL HARDWARE AND ANCHOR BOLTS SHALL BE GALVANIZED PER ASTM A153 OR B695.
- ALL U-BOLTS SHALL BE ASTM A36 OR EQUIVALENT, WITH LOCKING DEVICE, UNLESS NOTED OTHERWISE
- 4. FIELD CUT EDGES, EXCEPT DRILLED HOLES, SHALL BE GROUND SMOOTH.
- ALL FIELD CUT SURFACES, FIELD DRILLED HOLES & GROUND SURFACES WHERE EXISTING PAINT OR GALVANIZATION REMOVAL WAS REQUIRED SHALL BE REPAIRED WITH (2) BRUSHED COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS.
- ALL STRUCTURAL STEEL EMBEDDED IN THE CONCRETE SHALL BE APPLIED WITH (2) BRUSHED COATS OF POLYGUARD CA-14 MASTIC OR FOLIVALENT. REFER TO THE MANUFACTURER SPECIFICATIONS FOR SURFACE PREPARATION AND APPLICATION. APPLICATION OF POLYGUARD 400 WRAP IS NOT ESSENTIAL
- CONTRACTOR SHALL PERFORM WORK ON ONLY ONE (1) TOWER FACE AND REPLACE/REINFORCE ONE (1) BOLT/MEMBER AT A TIME
- 8. ALL FIELD DRILLED HOLES TO BE USED FOR FIELD BOLTING INSTALLATION SHALL BE STANDARD HOLES, AS DEFINED BY AISC, UNLESS NOTED OTHERWISE.

PAINT

AS REQUIRED, CLEAN AND PAINT PROPOSED STEEL ACCORDING TO FAA ADVISORY CIRCULAR AC 70/7460-1L

WELDING

- ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1.
- 2. ALL WELDS SHALL BE INSPECTED VISUALLY. IF DIRECTED BY ENGINEER OF RECORD, 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE (100% IF REJECTABLE DEFECTS ARE FOUND) TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1. REPAIR ALL WELDS AS NECESSARY.
- 3. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR.
- ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER AND/OR BASE METAL, PER AWS D1.1, UNLESS NOTED OTHERWISE
- 5. IN CASES WHERE BASE METAL GRADE IS UNKNOWN, ALL WELDING ON LATTICE TOWERS SHALL BE DONE WITH E70XX ELECTRODES; ALL WELDING ON POLE STRUCTURES SHALL BE DONE WITH E80XX ELECTRODES, UNLESS NOTED OTHERWISE.
- 6. PRIOR TO FIELD WELDING GALVANIZED MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING 1/2" BEYOND ALL FIELD WELD SURFACES. AFTER WELD AND WELD INSPECTION IS COMPLETE, REPAIR ALL GROUND AND WELDED SURFACES WITH ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS.

BOLT TIGHTENING PROCEDURE

- STRUCTURAL CONNECTIONS TO BE ASSEMBLED AND INSPECTED IN ACCORDANCE WITH RCSC SPECIFICATIONS.
- 2 FLANGE BOLTS SHALL BE INSTALLED AND TIGHTENED USING DIRECT TENSION INDICATING (DTI). SQUIRTER WASHERS. DTI SQUIRTER WASHERS ARE TO BE INSTALLED AND ORIENTED / TIGHTENED PER MANUFACTURER SPECIFICATIONS TO ACHIEVE DESIRED LEVEL OF BOLT PRE-TENSION
- 3. IN LIEU OF USING DTI SQUIRTER WASHERS, FLANGE BOLTS MAY BE TIGHTENED USING AISC / RCSC "TURN-OF-THE-NUT" METHOD, PENDING APPROVAL BY THE ENGINEER OF RECORD (EOR). TIGHTEN FLANGE BOLTS USING THE CHART BELOW:

BOLT LENGTHS LIP TO AND INCLUDING FOUR DIAMETERS

DOLIL	LING THE OF TO AND INCLUDING FOUR DIAMET	LING
1/2"	BOLTS UP TO AND INCLUDING 2.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
5/8"	BOLTS UP TO AND INCLUDING 2.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
3/4"	BOLTS UP TO AND INCLUDING 3.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
7/8"	BOLTS UP TO AND INCLUDING 3.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1"	BOLTS UP TO AND INCLUDING 4.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-1/8"	BOLTS UP TO AND INCLUDING 4.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-1/4"	BOLTS UP TO AND INCLUDING 5.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-3/8"	BOLTS UP TO AND INCLUDING 5.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-1/2"	BOLTS UP TO AND INCLUDING 6.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT

BOLT LENGTHS OVER FOUR DIAMETERS BUT NOT EXCEEDING EIGHT DIAMETERS

1/2"	BOLTS 2.25 TO 4.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
5/8"	BOLTS 2.75 TO 5.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
3/4"	BOLTS 3.25 TO 6.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
7/8"	BOLTS 3.75 TO 7.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1"	BOLTS 4.25 TO 8.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-1/8"	BOLTS 4.75 TO 9.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-1/4"	BOLTS 5.25 TO 10.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-3/8"	BOLTS 5.75 TO 11.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-1/2"	BOLTS 6 25 TO 12 0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT

4. SPLICE BOLTS SUBJECT TO DIRECT TENSION SHALL BE INSTALLED AND TIGHTENED AS PER SECTION 8.2.1 OF THE AISC "SPECIFICATION FOR STRUCTURAL JOINTS USING A325 OR A490 BOLTS", LOCATED IN THE AISC MANUAL OF STEEL CONSTRUCTION. THE INSTALLATION PROCEDURE IS PARAPHRASED AS FOLLOWS:

FASTENERS SHALL BE INSTALLED IN PROPERLY ALIGNED HOLES AND TIGHTENED BY ONE OF THE METHODS DESCRIBED IN SUBSECTION 8.2.1 THROUGH 8.2.4.

8.2.1 TURN-OF-NUT PRETENSIONING

BOLTS SHALL BE INSTALLED IN ALL HOLES OF THE CONNECTION AND BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8.1, UNTIL ALL THE BOLTS ARE SIMULTANEOUSLY SNUG TIGHT AND THE CONNECTION IS FULLY COMPACTED. FOLLOWING THIS INITIAL OPERATION ALL BOLTS IN THE CONNECTION SHALL BE TIGHTENED FURTHER BY THE APPLICABLE AMOUNT OF ROTATION SPECIFIED ABOVE. DURING THE TIGHTENING OPERATION THERE SHALL BE NO ROTATION OF THE PART NOT TURNED BY THE WRENCH. TIGHTENING SHALL PROGRESS SYSTEMATICALLY.

5. ALL OTHER BOLTED CONNECTIONS SHALL BE BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8.1 OF THE SPECIFICATION.

ALL BOLT HOLES SHALL BE ALIGNED TO PERMIT INSERTION OF THE BOLTS WITHOUT LINDUE DAMAGE TO THE THREADS. BOLTS SHALL BE PLACED IN ALL HOLES WITH WASHERS POSITIONED AS REQUIRED AND NUTS THREADED TO COMPLETE THE ASSEMBLY. COMPACTING THE JOINT TO THE SNUG-TIGHT CONDITION SHALL PROGRESS SYSTEMATICALLY FROM THE MOST RIGID PART OF THE JOINT. THE SNUG-TIGHTENED CONDITION IS THE TIGHTNESS THAT IS ATTAINED WITH A FEW IMPACTS OF AN IMPACT WRENCH OR THE FULL EFFORT OF AN IRONWORKER USING AN ORDINARY SPUD WRENCH TO BRING THE CONNECTED PLIES INTO FIRM CONTACT.

APPLICABLE CODES AND STANDARDS

- ANSI/TIA: STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES, 222-H EDITION.
- 2. 2018 INTERNATIONAL BUILDING CODE
- 3. 2020 NEW YORK BUILDING CODE.
- 4. ACI 318: AMERICAN CONCRETE INSTITUTE, BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE. REFERENCE LATEST APPROPRIATE EDITION TO MATCH LOCAL AND/OR INTERNATIONAL BUILDING CODE(S) LISTED ABOVE.
- 5. CRSI: CONCRETE REINFORCING STEEL INSTITUTE, MANUAL OF STANDARD PRACTICE, LATEST EDITION.
- 6. AISC: AMERICAN INSTITUTE OF STEEL CONSTRUCTION, MANUAL OF STEEL CONSTRUCTION, LATEST EDITION.
- 7. AWS: AMERICAN WELDING SOCIETY D1.1, STRUCTURAL WELDING CODE, LATEST

SPECIAL INSPECTION

- 1. A QUALIFIED INDEPENDENT TESTING LABORATORY, EMPLOYED BY THE OWNER, SHALL PERFORM INSPECTION AND TESTING IN ACCORDANCE WITH IBC 2018, SECTION 1704 AS REQUIRED BY PROJECT SPECIFICATIONS FOR THE FOLLOWING CONSTRUCTION WORK:
 - a) STRUCTURAL WELDING (CONTINUOUS INSPECTION OF FIELD WELD ONLY)
 - b) HIGH STRENGTH BOLTS (PERIODIC INSPECTION OF A325 EXTENSION FLANGE BOLTS TO BE TIGHTENED PER "TURN-OF-THE-NUT" METHOD)
- 2. THE INSPECTION AGENCY SHALL SUBMIT INSPECTION AND TEST REPORTS TO THE BUILDING DEPARTMENT, THE ENGINEER OF RECORD, AND THE OWNER IN ACCORDANCE WITH IBC 2018, SECTION 1704. UNLESS THE FABRICATOR IS APPROVED BY THE BUILDING OFFICIAL TO PERFORM SUCH WORK WITHOUT THE SPECIAL INSPECTIONS.

AMERICAN TOWER A.T. ENGINEERING SERVICE, PLLC

3500 REGENCY PARKWAY

SUITE 100 **CARY, NC 27518** PHONE: (919) 468-0112

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION THESE DRAWINGS AND/OR THE ALCOMPATYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH THE ALCOMPATY OF THE STRUCTURE RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NO THE PROJECT IS EXECUTED, NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT, CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN

REV.	DESCRIPTION	BY	DATE
<u> </u>	FIRST ISSUE	NYG	05/14/21
\triangle			
\wedge			

ATC SITE NUMBER:

413161

ATC SITE NAME:

BALDWINSVILLE NY SQA

NEW YORK

SITE ADDRESS: 2846 BELGIUM RD BALDWINSVILLE, NY 13027

DRAWN BY:	NYG
APPROVED BY:	MER
DATE DRAWN:	05/14/21
ATC JOB NO:	13544814_C6_05

IBC GENERAL NOTES

SHEET NUMBER

REVISION

G-002

MODIFICATION INSPECTION NOTES

THE SPECIAL INSPECTION (SI) PROCEDURE IS INTENDED TO CONFIRM THAT CONSTRUCTION AND INSTALLATION MEETS ENGINEERING DESIGN, ATC PROCEDURES AND ATC STANDARD SPECIFICATIONS FOR WIRELESS TOWER SITES

TO ENSURE THAT THE REQUIREMENTS OF THE SI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR AND THE INSPECTOR BEGIN COMMUNICATING AND COORDINATING AS SOON AS A PO IS RECEIVED FROM AMERICAN TOWER CORPORATION (ATC). IT IS EXPECTED THAT EACH PARTY WILL PROACTIVELY REACH OUT TO THE OTHER PARTY. IF CONTACT INFORMATION IS NOT KNOWN, CONTACT YOUR AMERICAN TOWER POINT OF CONTACT.

SPECIAL INSPECTOR

THE SPECIAL INSPECTOR IS REQUIRED TO CONTACT THE GENERAL CONTRACTOR AS SOON AS RECEIVING A POFROM ATC. UPON RECEIVING A POFROM ATC THE SPECIAL INSPECTOR AT A MINIMUM MUST:

- REVIEW THE REQUIREMENTS OF THE SI CHECKLIST.
- WORK WITH THE GENERAL CONTRACTOR TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS.
- ANY CONCERNS WITH THE SCOPE OF WORK OR PROJECT COMMITMENT MUST BE RELAYED TO THE ATC POINT OF CONTACT IMMEDIATELY.

THE SPECIAL INSPECTOR IS RESPONSIBLE FOR COLLECTING ALL GENERAL CONTRACTOR INSPECTION AND TEST REPORTS, REVIEWING THESE DOCUMENTS FOR ADHERENCE TO CONTRACT DOCUMENTS, CONDUCTING THE IN-FIELD INSPECTIONS, AND SUBMITTING THE SI REPORT TO AMERICAN TOWER CORPORATION.

GENERAL CONTRACTOR

THE GENERAL CONTRACTOR IS REQUIRED TO CONTACT THE SI INSPECTOR AS SOON AS RECEIVING A PO FOR THE MODIFICATION INSTALLATION OR TURNKEY PROJECT TO, AT A MINIMUM:

- REVIEW THE REQUIREMENTS OF THE SI CHECKLIST.
- WORK WITH THE SI TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS.
- BETTER UNDERSTAND ALL INSPECTION AND TESTING REQUIREMENTS.

THE GENERAL CONTRACTOR SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE SI CHECKLIST.

	SPECIAL INSPECTION CHECKLIST								
INSPECTION DOCUMENT		INSPECTION TESTING	RESPONSIBILITY	SI REVIEW REQUIRED			INSPECTIO	INSPECTION FREQUENCY	
		REQUIRED		PRE CX	DURING CX	POST CX	PERIODIC	CONTINUOUS	
SPECIAL INSPECTION FIELD WORK & REPORT	DOCUMENTATION AND SITE VISIT CONDUCTED BY AN ATC APPROVED SPECIAL INSPECTOR AS REQUIRED BY ATC AND OTHER AUTHORITIES HAVING JURISDICTION. INSPECTION PARAMETERS TO FOLLOW ATC'S STANDARD SPECIFICATION FOR WIRELESS TOWER SITES.	•	SI			•			
ENGINEERING ASSEMBLY DRAWINGS	GC SHALL SUBMIT DRAWINGS TO SI FOR INCLUSION IN SI REPORT	✓	GC	*					
FABRICATED MATERIAL VERIFICATION & INSPECTION	MTR AND OR MILL CERTIFICATIONS FOR SUPPLIED MATERIALS GC SHALL SUPPLY SI WITH REPORTS TO BE INCLUDED IN SI REPORT WHEN REQUIRED BY ATC	•	SI	*					
CERTIFIED WELD INSPECTION	INSPECTION AND REPORT OF STRUCTURAL WELDING PERFORMED DURING PROJECT COMPLETED BY A CWI AND INCLUDED WITHIN SI REPORT		GC / TA						
FOUNDATION INSPECTION & VERIFICATION	VISUAL OBSERVATION AND APPROVAL OF FOUNDATION EXCAVATION, REBAR PLACEMENT, CASING/SHORING/FORMING PLACEMENT, AND ANCHOR TEMPLATE AND ANCHOR PLACEMENT - TO BE SI APPROVED PRIOR TO CONCRETE POUR AND DOCUMENTED IN THE SI REPORT		SI						
ANCHOR, ROCK ANCHOR OR HELICAL PULL-OUT TEST	PULL TESTING OF INSTALLED ANCHORS TO BE COMPLETED AND DOCUMENTED IN SI REPORT		GC / TA						
CONCRETE INSPECTION & VERIFICATION	CONCRETE MIX DESIGN, SLUMP TEST, COMPRESSIVE TESTING, AND SAMPLE GATHERING TECHNIQUES ARE TO BE PROVIDED FOR INCLUSION IN THE SI REPORT. SI SHALL VERIFY CONCRETE PLACEMENT AS REQUIRED BY THE DESIGN DOCUMENTS (INSPECTION FREQUENCY IS MARKED CONTINUOUS)		GC / TA						
DYWIDAG PLACEMENT/ANCHOR BOLT EMBEDMENT - EPOXY/GROUT INSTALL	ANCHOR/BAR EMBEDMENT, HOLE SIZE, EPOXY/GROUT TYPE, INSTALLATION TEMPERATURE AND INSTALLATION SHALL BE VERIFIED BY THE SI AND INCLUDED IN THE SI REPORT		GC / SI						
BASE PLATE GROUT INSPECTION & VERIFICATION	BASE PLATE GROUTING TYPE AND PLACEMENT SHALL BE CONFIRMED BY THE SI AND INCLUDED IN THE SI REPORT		GC / SI						
EARTHWORK INSPECTION & VERIFICATION	EXCAVATION, FILL, SLOPE, GRADE AND OTHER EARTHWORK REQUIREMENTS PER PLANS SHALL BE VERIFIED BY THE SI AND INCLUDED IN THE SI REPORT		GC / TA						
COMPACTION VERIFICATION	CONTRACTOR SHALL PROVIDE AN INDEPENDENT THIRD PARTY CERTIFIED INSPECTION WHICH PROVIDES TEST RESULTS FOR COMPACTION TEST OF SOILS IN PLACE TO ASTM STANDARDS.		GC / TA						
GROUND TESTING & VERIFICATION	GC SHALL PROVIDE DOCUMENTATION SHOWING THAT THE GROUNDING SYSTEM SHALL HAVE A MEASURED RESISTANCE TO THE GROUND OF NOT MORE THAN THE RECOMMENDED 10 OHMS. PER THE ATC CONSTRUCTION SPECIFICATION UNDER SECTION 2.15 THIS DOCUMENTATION MUST BE AN INDEPENDENT CERTIFICATION.		GC						
STEEL CONSTRUCTION INSPECTION & VERIFICATION	VISUAL OBSERVATION AND APPROVAL OF STEEL CONSTRUCTION TO BE PERFORMED BY THE SI. INSPECTION TO INCLUDE VERIFICATION OF NEW CONSTRUCTION OR MODIFICATION OF EXISTING CONSTRUCTION PER ENGINEERED PLANS. DETAILED VERIFICATION SHALL BE INCLUDED IN SI REPORT.	*	SI			*	*		
ON-SITE COLD GALVANIZING VERIFICATION	SI SHALL VERIFY WITH GC ALL COLD GALVANIZATION TYPE AND APPLICATION AND INCLUDE SUMMARY IN SI REPORT	✓	GC			*	✓		
GUY WIRE TENSIONING & TOWER ALIGNMENT REPORT	GC SHALL PROVIDE SI EVIDENCE OF PROPER GUY TENSIONING AND TOWER PLUMB PER PLANS. SI SHALL VERIFY AND INCLUDE PLUMB AND TENSION REPORTING IN SI REPORT.		GC						
GC AS-BUILT DRAWINGS WITH CONSTRUCTION RED-LINES	GC SHALL SUBMIT "AS-BUILT" DRAWINGS INDICATING ANY APPROVED CHANGES TO ENGINEERED PLANS TO SI FOR APPROVAL/REVIEW AND INCLUSION IN SI REPORT	•	GC			*			
SI AS-BUILT DRAWINGS WITH INSPECTION RED-LINES (AS REQUIRED)	SI SHALL SUBMIT "AS-BUILT" DRAWINGS INDICATING ANY APPROVED CHANGES TO ENGINEERED PLANS WITHIN SI REPORT	✓	SI			✓			
TIA INSPECTION	SI SHALL COMPLETE TIA INSPECTION AND PROVIDE SEPARATE TIA INSPECTION DOCUMENTATION TO ATC CM		SI						
PHOTOGRAPHS	PHOTOGRAPHIC EVIDENCE OF SPECIAL INSPECTION, ON SITE REMEDIATION, AND ITEMS FAILING INSPECTION & REQUIRING FOLLOW UP TO BE INCLUDED WITHIN THE SI REPORT. COMPLETE PHOTO LOG IS TO BE SUBMITTED WITHIN SI REPORT.	*	GC / SI			*			

NOTE: SPECIAL INSPECTIONS ARE INTENDED TO BE A COLLABORATIVE EFFORT BETWEEN GC AND SI. WHENEVER POSSIBLE GC IS TO PROVIDE SI WITH PHOTOGRAPHIC OR OTHER ACCEPTABLE EVIDENCE OF PROPER INSTALLATION IF PERIODIC INSPECTION FREQUENCY IS ACCEPTABLE. THE GC AND SI SHALL WORK TO COMPILE EVIDENCE OF PROPER CONSTRUCTION AND LIMIT THE NUMBER OF SI SITE VISITS REQUIRED.

TABLE VEY

TABLE KEY: SI - ATC APPROVED SPECIAL INSPECTOR

GC - GENERAL CONTRACTOR

CX - CONSTRUCTION

CM - CONSTRUCTION MANAGER

TA - 3RD PARTY TESTING AGENCY ATC - AMERICAN TOWER CORPORATION

CENERAL CONTRACTOR IS REQUIRED TO CONTACT THE SUNSPECTOR AS SOON AS RECEIVING A

A.T. ENGINEERING SERVICE, PLLC
3500 REGENCY PARKWAY
SUITE 100
CARY, NC 27518
PHONE: (919) 468-0112
COA: 0012746

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUADOR OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWER.

	REV.	DESCRIPTION	BY	DATE
	\triangle_{-}	FIRST ISSUE	<u>NYG</u>	05/14/21
	\wedge			
	$\overline{\wedge}$			
	\bigcap			
	$\overline{\wedge}$			
ı			$\overline{}$	

ATC SITE NUMBER:

413161

ATC SITE NAME:

BALDWINSVILLE NY SQA

NEW YORK

SITE ADDRESS: 2846 BELGIUM RD BALDWINSVILLE, NY 13027

DRAWN BY:	NYG
APPROVED BY:	MER
DATE DRAWN:	05/14/21
ATC JOB NO:	13544814_C6_05
	APPROVED BY: DATE DRAWN:

SPECIAL INSPECTION CHECKLIST

SHEET NUMBER:

REVISION

G-003

U

BILL OF MATERIALS

	QUANTITY PROVIDED	PART NUMBER	DESCRIPTION	LENGTH	SHEET LIST	PART V	VEIGHT (lb)	NOTES
			20 FT EXTENSION MATERIAL & HARDWARE					
2	2	413161-1	LEG EXTENSION WELDMENT	20'-0"	S-501, Z-501	281.4	563	
1	1	413161-1A	LEG EXTENSION WELDMENT W/ STEP TABS	20'-0"	S-501, Z-501	294.5	295	
6	6	413161-2	L 1 3/4" X 1 3/4" X 1/4"	6'-0 3/4"	S-501, Z-502	17.6	106	
30	30	413161-3	L 1 3/4" X 1 3/4" X 1/4"	7'-0 3/16''	S-501, Z-502	20.4	612	
72	76	BK-500-175-A325	BOLT, 1/2"Ø A325 W/ HHN-LKW-FW, GALVANIZED	1 3/4"				ALLFASTENERS - 2STBG12134A325-A
15	16	BK-500-200-A325	BOLT, 1/2"Ø A325 W/ HHN-LKW-FW, GALVANIZED	2"				ALLFASTENERS - 2STBG12200A325-A
12	13	BK-625-300-A325	BOLT, 5/8"Ø A325 W/ HHN-LKW-FW, GALVANIZED	3"				ALLFASTENERS - 2STBG58300A325-A
12	13		DTI SQUIRTER WASHER, 5/8"Ø (A325 RATED)					
			SAFETY CLIMB					
1	1	SC-RCL-120-SSC	SAFETY CLIMB (GALVANIZED, STAINLESS STEEL CABLE)	120'-0"				
 	<u> </u>	3C-RCL-120-33C	SAFETT CLIMB (GALVANIZED, STAINLESS STEEL CABLE)	120-0				
15	16	SB-625-8250	STEP BOLT					
30	32		LOCK WASHER, 5/8"Ø					GALVANIZED
30	32		HEAVY HEX NUT, 5/8"Ø ASTM A563 DH					GALVANIZED
							112 + 12 + 12 + 12 + 12 + 12 + 12 + 12	
en e							011-010-010-011-010-010-010-010-01-01-01	
DI GIT GIT GIT GIT GIT GIT GIT GIT GIT GI							DI GO: 40-CI 10-110-110-110 10-101-0 40-0 40-0 40-0	
							III 40-40-411-110-110-40-110-1101-0-40-41-411-40-40-4	
10 HD HIZ-10 - 10 HIZH (10 - 10 HD HIZ-10 HD H		0.00.00.00.00.00.00.00.00.00.00.00.00.0					**************************************	
					TOTAL \	WEIGHT (Ib)	1,576	PAGE 1 OF

3500 REGENCY PARKWAY
SUITE 100
CARY, NC 27518
PHONE: (919) 468-0112
COA: 0012746

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PIOR IS SUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWER.

REV	. DESCRIPTION	BY	DATE
⇘	FIRST ISSUE	NYG	05/14/21
$ \wedge $			
$\overline{\wedge}$			
\square			
$\overline{\wedge}$			
ı — `			

ATC SITE NUMBER:

413161

ATC SITE NAME:

BALDWINSVILLE NY SQA

NEW YORK

SITE ADDRESS: 2846 BELGIUM RD BALDWINSVILLE, NY 13027

DRAWN BY:	NYG
APPROVED BY:	MER
DATE DRAWN:	05/14/21
ATC JOB NO:	13544814_C6_05

BILL OF MATERIALS

SHEET NUMBER:

REVISION:

G-004

0

LEGEND

GROUNDING TEST WELL

AV, A/V ATS AIR VENT AUTOMATIC TRANSFER SWITCH

C CS CSC D CABINET COAX SHROUD CELL SITE CABINET DISCONNECT ELECTRICAL FIBER

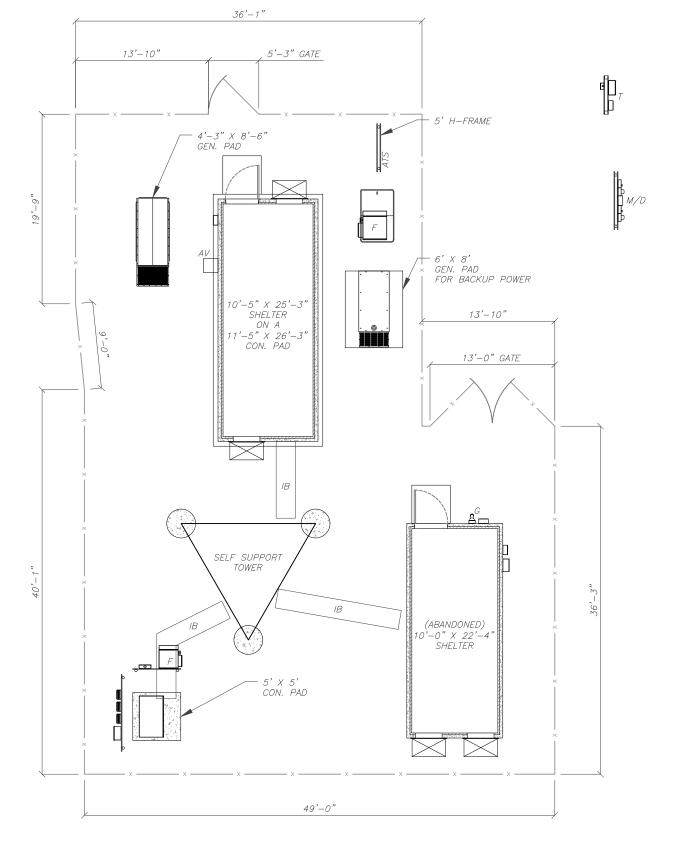
. GEN GENERATOR GENERATOR RECEPTACLE HAND HOLE, VAULT

G HH, V HFC HSM IB HYDROGEN FUEL CELL HYDROGEN STORAGE MATERIAL ICE BRIDGE

K LC LPG M KENTROX BOX LIGHTING CONTROL LIQUID PROPANE GAS METER

OHW OVERHEAD WIRE P PB PP PULL BOX POWER POLE TELCO TRANSFORMER

PROPERTY LINE


— — — ADJACENT PROPERTY LINE — LEASE AREA

EASEMENT WOOD FENCE WIRE FENCE

METAL FENCE GUARD RAIL CHAINLINK FENCE

ROAD (DIRT) ROAD (STONE) ROAD (PAVED)

3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: 0012746

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGLINEED WILL BE PROVIDING ON SITE CONSTRUCTION FOR VIEW THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERHEY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWER.

REV.	DESCRIPTION	BY	DATE
<u> </u>	FIRST ISSUE	NYG	05/14/21
$\overline{\wedge}$			
$\overline{\wedge}$			
$\overline{\wedge}$			

ATC SITE NUMBER:

413161

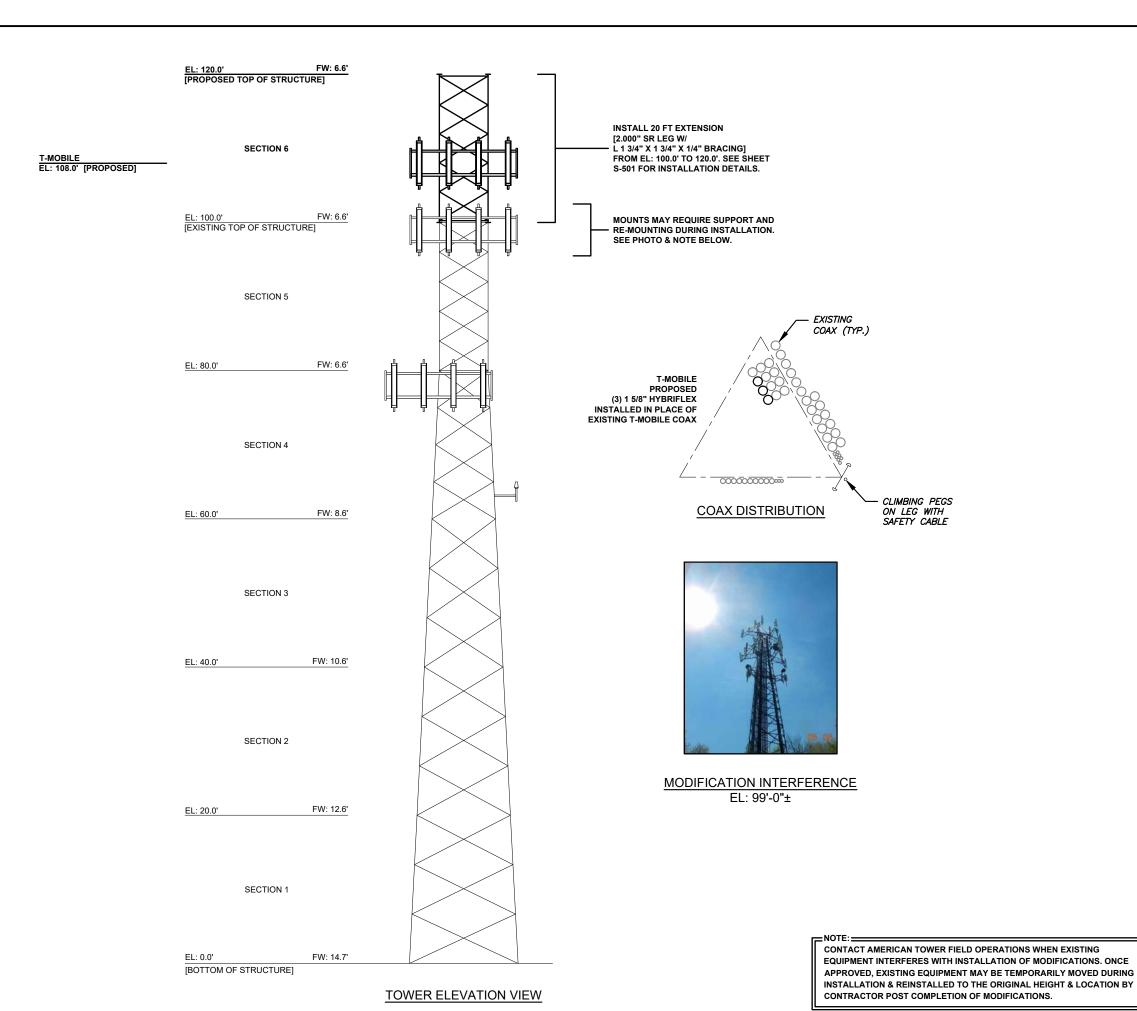
ATC SITE NAME:

BALDWINSVILLE NY SQA

NEW YORK

SITE ADDRESS: 2846 BELGIUM RD BALDWINSVILLE, NY 13027

DRAWN BY:	NYG
APPROVED BY:	MER
DATE DRAWN:	05/14/21
ATC JOB NO:	13544814_C6_05


DETAILED SITE PLAN

SHEET NUMBER:

REVISION:

C-101

AMERICAN TOWER®

A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518

PHONE: (919) 468-0112 COA: 0012746

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE PROJECT WILL BE PROVIDING ON STREET CONSTRIBUTION OF SEVIEW. THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWLED.

l	REV.	DESCRIPTION	BY	DATE
l	<u> </u>	FIRST ISSUE	NYG	05/14/21
l	$I\triangle_{-}$			
l	$\overline{\Lambda}$			
l				
l				

ATC SITE NUMBER:

413161

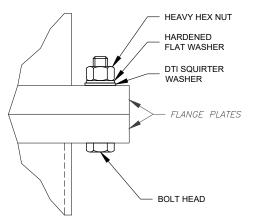
ATC SITE NAME:

BALDWINSVILLE NY SQA

NEW YORK

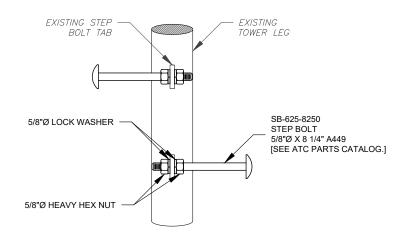
SITE ADDRESS: 2846 BELGIUM RD BALDWINSVILLE, NY 13027

DRAWN BY:	NYG
APPROVED BY:	MER
DATE DRAWN:	05/14/21
ATC JOB NO:	13544814_C6_05


MODIFICATION PROFILE

SHEET NUMBER:

REVISION


S-201

ELEVATION VIEW
SECTION 6 [EL: 100'-0" TO 120'-0"]

FLANGE BOLT INSTALLATION TYPICAL DETAIL

- ALL FLANGE BOLTS SHALL BE TIGHTENED USING DTI SQUIRTER WASHERS FOR TENSION VERIFICATION. SEE SHEET G-002 FOR DETAILS.
- 2. PROPER TORQUE GENERATING
 EQUIPMENT, WHICH MAY INCLUDE
 IMPACT WRENCHES, IS REQUIRED IN
 ORDER TO ACHIEVE DTI COMPRESSION
 WITH SQUIRT INDICATION.
 MANUFACTURER GUIDELINES FOR DTI
 INSTALLATION ARE TO BE FOLLOWED.

STEP BOLT INSTALLATION
TYPICAL DETAIL

-NOTE:

- ALIGN PROPOSED LEG WELDMENT W/ STEP TABS TO MATCH EXISTING CLIMBING PATH AND SAFETY CLIMB SYSTEM.
- 2. REMOVE EXISTING SAFETY CLIMB CABLE AND ASSOCIATED HARDWARE /
 MOUNTS. INSTALL NEW ATC-APPROVED SAFETY CLIMB SYSTEM WITH
 NEW 3/8"Ø SAFETY CLIMB CABLE. ENSURE 100% TIE-OFF IS MAINTAINED
 AND CABLE IS FREE OF ALL OBSTRUCTIONS. CONTRACTOR SHALL
 INSTALL THE SAFETY CLIMB IN ACCORDANCE WITH MANUFACTURER
 SPECIFICATIONS.

A.T. ENGINEERING SERVICE, PLLC
3500 REGENCY PARKWAY

500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: 0012746

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWER.

REV.	DESCRIPTION	BY	DATE
<u> </u>	FIRST ISSUE	NYG	05/14/21
\triangle_{-}			
$ \wedge $			
$\overline{\wedge}$			
\square			
-			

ATC SITE NUMBER:

413161

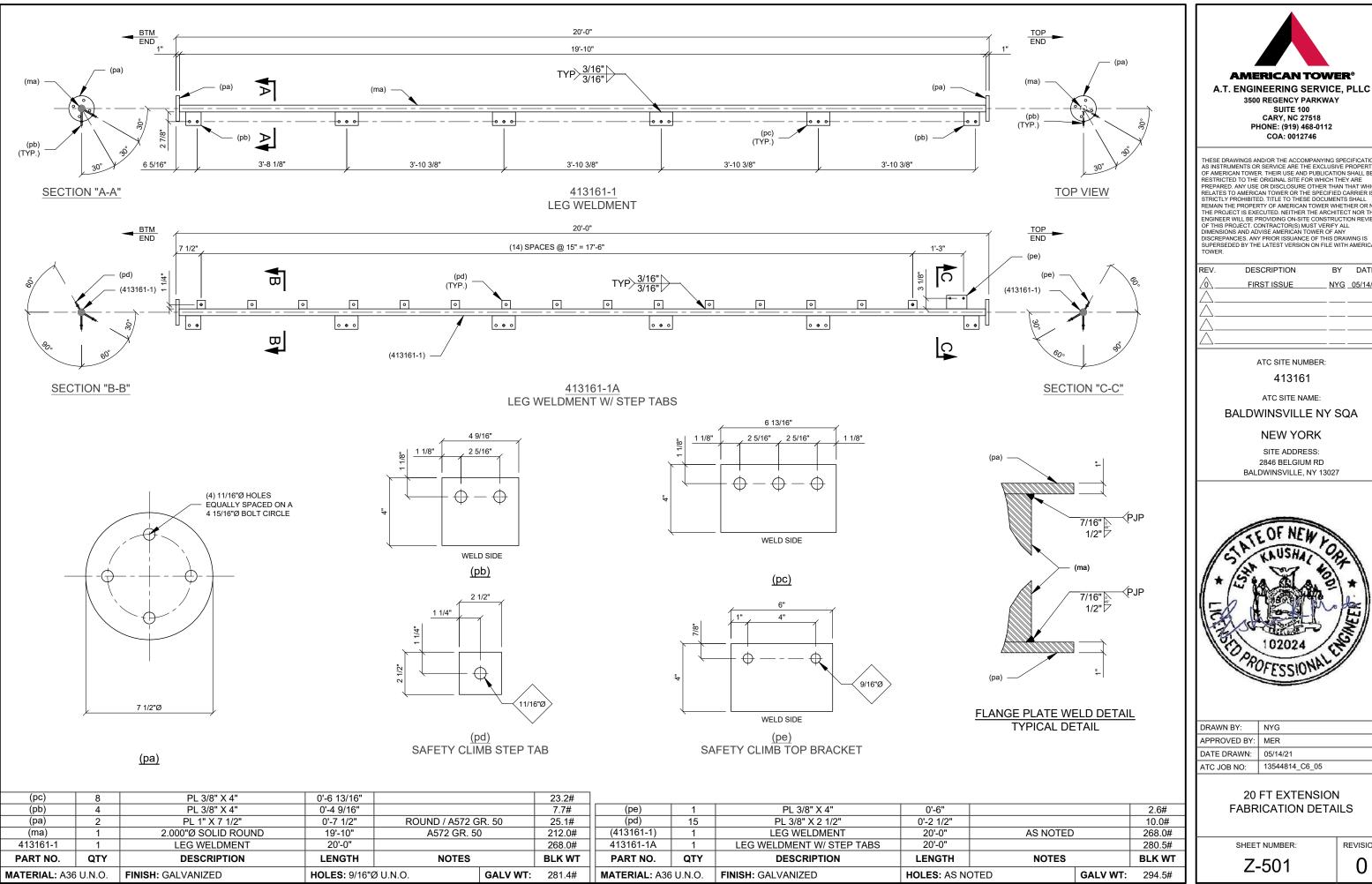
ATC SITE NAME:

BALDWINSVILLE NY SQA

NEW YORK

SITE ADDRESS: 2846 BELGIUM RD BALDWINSVILLE, NY 13027

DRAWN BY:	NYG
APPROVED BY:	MER
DATE DRAWN:	05/14/21
ATC JOB NO:	13544814_C6_05
	APPROVED BY: DATE DRAWN:


20 FT EXTENSION INSTALLATION DETAILS

SHEET NUMBER:

REVISION

S-501

0

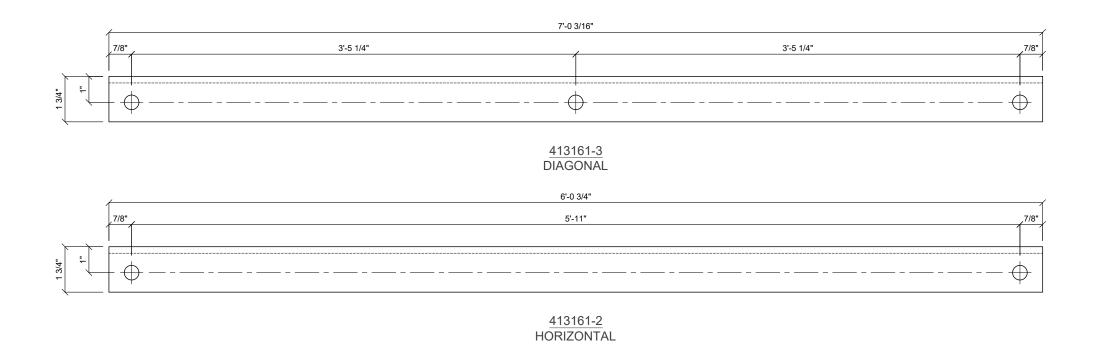
AMERICAN TOWER

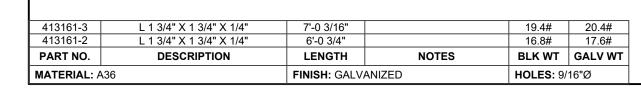
CARY, NC 27518 PHONE: (919) 468-0112

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. THLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHITHER OR NOT THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGINEED WILL BE PROVIDING ON SITE CONSTRUCTION PEVILED. THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWNER.

ı	REV	. DESCRIPTION	BY	DATE
ı	\triangle	FIRST ISSUE	NYG	05/14/21
ı	$ \wedge $			
ı	$\overline{\wedge}$			
ı	$ \overline{\wedge} $			
ı	$\overline{\Lambda}$			
1	l —	Y		

BALDWINSVILLE NY SQA


2846 BELGIUM RD BALDWINSVILLE, NY 13027



DRAWN BY:	NYG
APPROVED BY:	MER
DATE DRAWN:	05/14/21
ATC JOB NO:	13544814_C6_05

FABRICATION DETAILS

REVISION

3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: 0012746

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWER.

REV.	DESCRIPTION	BY	DATE
<u> </u>	FIRST ISSUE	NYG	05/14/21
\triangle			
$\overline{\wedge}$			
$\overline{\wedge}$			

ATC SITE NUMBER:

413161

ATC SITE NAME:

BALDWINSVILLE NY SQA

NEW YORK

SITE ADDRESS: 2846 BELGIUM RD BALDWINSVILLE, NY 13027

DRAWN BY:	NYG
APPROVED BY:	MER
DATE DRAWN:	05/14/21
ATC JOB NO:	13544814_C6_05

EXTENSION BRACING FABRICATION DETAILS

SHEET NUMBER:

Z-502

0

REVISION:

This report was prepared for American Tower Corporation by

Structural Analysis Report

Structure : 100 ft Self Supported Tower with Proposed 20 ft

Extension

ATC Site Name : Baldwinsville NY SQA, NY

ATC Asset Number : 413161

Engineering Number : 13544814_C3_04

Proposed Carrier : T-Mobile

Carrier Site Name : bville_east

Carrier Site Number : 30NS014B

Site Location : 2846 Belgium Rd

Baldwinsville, NY 13027-8839

43.163400,-76.311700

County : Onondaga

Date : March 25, 2021

Max Usage : 94%

Result : Pass

Prepared By: Chris Tahara, E.I.

TEP

Stroky 25

Reviewed By:

Tower Engineering Professionals, Inc. – 326 Tryon Road – Raleigh, NC 27603 – 919-661-6351 Office -919-661-6250 Fax – www.tepgroup.net

03/25/2021

Table of Contents

ntroduction	1
Supporting Documents	1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	2
Equipment to be Removed	. 2
Proposed Equipment	2
Structure Usages	3
Foundations	3
Deflection, Twist, and Sway	3
Standard Conditions	4
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 100 ft self supported tower with proposed 20 ft extension to reflect the change in loading by T-Mobile.

Supporting Documents

Tower Drawings	Rohn Drawing #C951343, dated August 23, 1995
Foundation Drawing Rohn Drawing #D870532 R2, dated December 10, 1987	
Geotechnical Report	Delta Oaks Group Project #GEO16-00253-02, dated April 15, 2016
Modifications	C&S Site #NY-SYR047, dated September 27, 2006

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	109 mph (3-Second Gust)
Basic Wind Speed w/ Ice:	40 mph (3-Second Gust) w/ 1-1/2" radial ice concurrent
Code:	ANSI/TIA-222-H / 2018 IBC / 2020 New York Building Code
Exposure Category:	В
Risk Category:	
Topographic Factor Procedure:	Method 1
Topographic Category:	1
Spectral Response:	$Ss = 0.14, S_1 = 0.05$
Site Class:	D - Stiff Soil

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

The design for the tower extension will be done in a future service.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elev.1 (ft)	Qty	Antenna	Mount Type	Lines	Carrier
108.0	-	-	-	(6) 1 1/4" Coax	T-MOBILE
	3	CSS XAP-460-V		(18) 1 5/8" Coax	
99.0	2	Commscope SBNHH-1D65C		(6) 3/8" (0.38"-	VERIZON WIRELESS
99.0	6	CSS V7C-865-2i		9.5mm) RET	
	1	CSS X7C-FRO-860-VR4		Control Cable	
90.0	1	VZW Unused Reserve (2304 sqin)	Log		
88.0	1	VZW Unused Reserve (2304 sqin)	Leg	•	
78.0	9	EMS FV90-12-000AL2	Sector Frames	(10) 7/8" Coax	
77.0	1	Radio Waves SP2-2.4	Sector Frames	(10) 7/6 COax	OTHER
66.0	1	Generic GPS	Log	(2) 1/2" Cooy	OTHER
63.0	1	Generic GPS	Leg	(3) 1/2" Coax	
59.0	1	Generic GPS	Leg	(1) 1/2" Coax	VERIZON WIRELESS

Equipment to be Removed

Elev.1 (ft)	Qty	Antenna	Mount Type	Lines	Carrier
109.0	3	Commscope SBNHH-1D65B		(6) 1 1/4" Coax	
	3	Andrew ETW190VS12UB (14.6 lb)	(3) 3/8" (0.38"- 9.5mm) RET	T-MOBILE	
108.0	3	Ericsson KRY 112 144/1		9.5mm) RET	I-IVIODILE
	6	EMS RR90-17-00DP		Control Cable	

Proposed Equipment

Elev.1 (ft)	Qty	Antenna	Mount Type	Lines	Carrier
	3	Ericsson RRUS 4415 B25	SitePro VFA 12 Sector Mounts		
	3	Ericsson Air6449 B41		(3) 1 5/8" Hybriflex	T-MOBILE
108.0	3	Ericsson AIR32 B66Aa/B2a			
	3	RFS APXVAALL24 43-U-NA20			
	3	Ericsson Radio 4449 B71 B85A			

¹Contracted elevations are shown for appurtenances within contracted installation tolerances. Appurtenances outside of contract limits are shown at installed elevations.

Install proposed coax double stacked in the place of the existing T-Mobile coax.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Legs	94%	Pass
Diagonals	94%	Pass
Horizontals	23%	Pass
Anchor Bolts	57%	Pass
Leg Bolts	55%	Pass

Foundations

Reaction Component	Analysis Reactions	% of Usage
Uplift (Kips)	92.3	59%
Axial (Kips)	107.1	66%
Shear (Kips)	11.5	10%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Deflection, Twist and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Twist (°)	Sway (Rotation) (°)
	Ericsson Radio 4449 B71 B85A				
	Ericsson RRUS 4415 B25				
108.0	Ericsson Air6449 B41	T-MOBILE	0.290	0.025	0.263
	Ericsson AIR32 B66Aa/B2a			0.025	
	RFS APXVAALL24 43-U-NA20				
77.0	Radio Waves SP2-2.4	OTHER	0.144		0.215

^{*}Deflection, Twist and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-H

Standard Conditions

All engineering services performed by ATC Tower Services, Inc. are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of ATC Tower Services, Inc.

It is the responsibility of the client to ensure that the information provided to ATC Tower Services, Inc. and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and ATC Tower Services, Inc., all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. ATC Tower Services, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

© 2007 - 2021 by ATC IP LLC. All rights reserved.

Job Information

Client : T-MOBILE

Tower: 413161 Location: Baldwinsville NY Base Width: 14.66 ft

Code: ANSI/TIA-222-H Topo Method: Method 1 Top Width: 6.45 ft

Risk Cat: II Topo: 1 Tower Ht: 120.00

sk Cat : II Topo: 1 Tower Ht : 120.00 ft

Exposure : B Shape : Triangle

Sections Properties Leg Members **Diagonal Members Horizontal Members** Section PX 50 ksi 3" DIA PIPE SAE 36 ksi 2.5X2.5X0.1875 3" DIA PIPE 2-1/2" DIA PIPE SAE 36 ksi 2.5X2.5X0.1875 SAE 36 ksi 2X2X0.1875 PST 50 ksi PX 50 ksi PST 50 ksi 2-1/2" DIA PIPE SAE 36 ksi 1.75X1.75X0.125 2-1/2" DIA PIPE 2-1/2" DIA PIPE 2-1/2" DIA PIPE PST 50 ksi SAE 36 ksi 1.75X1.75X0.125 SAE 36 ksi 1.75X1.75X0.125 SAE 36 ksi 1.5X1.5X0.125 SAE 36 ksi 1.5X1.5X0.125 PST 50 ksi SAE 36 ksi 1.5X1.5X0.125

PST 50 I	(si 2-1/2"	DIA PIPE	SAE 3	36 ksi 1.5X1.5X0.125	
			D	Discrete Appurtenance	
	Elev (ft)	Type	Qty	y Description	
	108.00 108.00 P 108.00 P 108.00 P 108.00 P 99.00 P 99.00 P 99.00 P 99.00 P 98.00 M 90.00 O 88.00 O	anel anel anel anel anel anel ounting F ther ther lounting F anel ish //hip	3 3 3 1 6 2 2 3 Frame 3 1 1	3 Fricsson Radio 4449 B71 B85A 3 RFS APXVAALL24 43-U-NA20 3 Fricsson AIR32 B66Aa/B2a 3 Fricsson AIR32 B66Aa/B2a 3 Fricsson RRUS 4415 B25 1 CSS X7C-FRO-860-VR4 5 CSS V7C-865-2i 2 Commscope SBNHH-1D65C 3 CSS XAP-460-V 3 Round Sector Frame 1 VZW Unused Reserve (2304 sqin) 2 VZW Unused Reserve (2304 sqin) 3 Round Sector Frame 5 EMS FV90-12-000AL2 6 EMS FV90-12-000AL2 7 Radio Waves SP2-2.4	
				Linear Appurtenance	
	Elev (f From	•	Qty Des	escription	
	0.00 0.00 10.00 10.00 10.00 10.00 0.00	108.00 108.00 100.00 99.00 99.00 78.00 77.00 66.00 63.00 59.00	6 1 1/2 Way 6 3/8" 18 1 5/9 7/8" 1 Way 1 7/8" 2 1/2" 1 1/2"	5/8" Hybriflex 1/4" Coax 'aveguide 8" (0.38"- 9.5mm) 5/8" Coax 8" Coax aveguide 8" Coax 2" Coax 2" Coax 2" Coax	
				<u> </u>	

Global Base Foundation Design Loads

Vertical (kip)

18.39

59.38

Horizontal (kip)

18.70

4.60

Moment (k-ft)

1,281.41

311.06

Load Case

DL + WL + IL

DL + WL

120.00	\bowtie	
Sect 7		Loads: 109 mph no ice 40 mph w/ 1"1/2 radial ice Site Class: D Ss: 0.14 S1: 0.05 60 mph Serviceability
100.00		
Sect 6		
80.00		
Sect 5		
65.13		
60.0 ^{Sect 4}		
Sect 3		
40.00		
Sect 2		
20.00		
Sect 1		

© 2007 - 2021 by ATC IP LLC. All rights reserved.

Job Information

Client : T-MOBILE

Tower: 413161 Location: Baldwinsville NY Base Width: 14.66 ft

Code: ANSI/TIA-222-H Topo Method: Method 1 Top Width: 6.45 ft

Risk Cat: II Topo: 1 Tower Ht: 120.00 ft

Exposure : B Shape : Triangle

Indivi	Individual Base Foundation Design Loads											
Vertical (kip)	Uplift (kip)	Horizontal (kip)										
107.09	92.34	11.45										

© 2007 - 2021 by ATC IP LLC. All rights reserved. Site Number: 413161 Code: ANSI/TIA-222-H

Site Name: Baldwinsville NY SQA, NY **Engineering Number:** 13544814_C3_04 3/25/2021 1:26:25 PM

Customer: T-MOBILE

Analysis Parameters

Location: Onondaga County, NY Height (ft): 120

Code: ANSI/TIA-222-H Base Elevation (ft): 0.00

Shape: **Triangle Bottom Face Width (ft):** 14.66

Top Face Width (ft): **Tower Manufacturer:** Rohn 6.45 **Tower Type: Self Support Anchor Bolt Detail Type** С

Kd: 0.85 Ke: 0.98

Ice & Wind Parameters

109 mph **Design Windspeed Without Ice:** В **Exposure Category:**

Risk Category: Ш **Design Windspeed With Ice:** 40 mph

Topographic Factor Procedure: Method 1 **Operational Windspeed:** 60 mph **Topographic Category:** 1 **Design Ice Thickness:** 1.50 in

Crest Height: 0 ft HMSL: 525.00 ft

Seismic Parameters

Analysis Method: Equivalent Lateral Force Method

Site Class: D - Stiff Soil

Period Based on Rayleigh Method (sec): 0.84

C_s: 0.032 6 1.3 T_L(sec): p: Cs, Max: S_s: 0.143 S,: 0.051 0.032

F_a: 1.600 F_{v} : 2.400 Cs, Min: 0.030

0.153 0.082 S_{ds}: S_{d1}:

Load Cases

1.2D + 1.0W Normal 109 mph Normal with No Ice

1.2D + 1.0W 60 deg 109 mph 60 degree with No Ice

1.2D + 1.0W 90 deg 109 mph 90 degree with No Ice

1.2D + 1.0W 120 deg 109 mph 120 degree with No Ice

1.2D + 1.0W 180 deg 109 mph 180 degree with No Ice

1.2D + 1.0W 210 deg 109 mph 210 degree with No Ice

1.2D + 1.0W 240 deg 109 mph 240 degree with No Ice

1.2D + 1.0W 300 deg 109 mph 300 degree with No Ice

1.2D + 1.0W 330 deg 109 mph 330 degree with No Ice

0.9D + 1.0W Normal 109 mph Normal with No Ice (Reduced DL)

0.9D + 1.0W 60 deg 109 mph 60 deg with No Ice (Reduced DL)

0.9D + 1.0W 90 deg 109 mph 90 deg with No Ice (Reduced DL)

0.9D + 1.0W 120 deg 109 mph 120 deg with No Ice (Reduced DL)

0.9D + 1.0W 180 deg 109 mph 180 deg with No Ice (Reduced DL)

0.9D + 1.0W 210 deg 109 mph 210 deg with No Ice (Reduced DL)

0.9D + 1.0W 240 deg 109 mph 240 deg with No Ice (Reduced DL) 0.9D + 1.0W 300 deg

109 mph 300 deg with No Ice (Reduced DL)

0.9D + 1.0W 330 deg 109 mph 330 deg with No Ice (Reduced DL) Site Number: 413161 Code: ANSI/TIA-222-H © 2007 - 2021 by ATC IP LLC. All rights reserved.

Site Name: Baldwinsville NY SQA, NY **Engineering Number:** 13544814_C3_04 3/25/2021 1:26:25 PM

Customer: T-MOBILE

Analysis Parameters

1.2D + 1.0Di + 1.0Wi Normal 40 mph Normal with 1.50 in Radial Ice 1.2D + 1.0Di + 1.0Wi 60 deg 40 mph 60 deg with 1.50 in Radial Ice 1.2D + 1.0Di + 1.0Wi 90 deg 40 mph 90 deg with 1.50 in Radial Ice 1.2D + 1.0Di + 1.0Wi 120 deg 40 mph 120 deg with 1.50 in Radial Ice 1.2D + 1.0Di + 1.0Wi 180 deg 40 mph 180 deg with 1.50 in Radial Ice 40 mph 210 deg with 1.50 in Radial Ice 1.2D + 1.0Di + 1.0Wi 210 deg 1.2D + 1.0Di + 1.0Wi 240 deg 40 mph 240 deg with 1.50 in Radial Ice 1.2D + 1.0Di + 1.0Wi 300 deg 40 mph 300 deg with 1.50 in Radial Ice 1.2D + 1.0Di + 1.0Wi 330 deg 40 mph 330 deg with 1.50 in Radial Ice 1.2D + 1.0Ev + 1.0Eh Normal **Seismic Normal** 1.2D + 1.0Ev + 1.0Eh 60 deg Seismic 60 deg 1.2D + 1.0Ev + 1.0Eh 90 deg Seismic 90 deg 1.2D + 1.0Ev + 1.0Eh 120 deg Seismic 120 deg 1.2D + 1.0Ev + 1.0Eh 180 deg Seismic 180 deg 1.2D + 1.0Ev + 1.0Eh 210 deg Seismic 210 deg 1.2D + 1.0Ev + 1.0Eh 240 deg Seismic 240 deg 1.2D + 1.0Ev + 1.0Eh 300 deg Seismic 300 deg 1.2D + 1.0Ev + 1.0Eh 330 deg Seismic 330 deg Seismic (Reduced DL) Normal 0.9D - 1.0Ev + 1.0Eh Normal 0.9D - 1.0Ev + 1.0Eh 60 deg Seismic (Reduced DL) 60 deg 0.9D - 1.0Ev + 1.0Eh 90 deg Seismic (Reduced DL) 90 deg 0.9D - 1.0Ev + 1.0Eh 120 deg Seismic (Reduced DL) 120 deg 0.9D - 1.0Ev + 1.0Eh 180 deg Seismic (Reduced DL) 180 deg 0.9D - 1.0Ev + 1.0Eh 210 deg Seismic (Reduced DL) 210 deg 0.9D - 1.0Ev + 1.0Eh 240 deg Seismic (Reduced DL) 240 deg 0.9D - 1.0Ev + 1.0Eh 300 deg Seismic (Reduced DL) 300 deg 0.9D - 1.0Ev + 1.0Eh 330 deg Seismic (Reduced DL) 330 deg 1.0D + 1.0W Service Normal Serviceability - 60 mph Wind Normal 1.0D + 1.0W Service 60 deg Serviceability - 60 mph Wind 60 deg 1.0D + 1.0W Service 90 deg Serviceability - 60 mph Wind 90 deg 1.0D + 1.0W Service 120 deg Serviceability - 60 mph Wind 120 deg 1.0D + 1.0W Service 180 deg Serviceability - 60 mph Wind 180 deg 1.0D + 1.0W Service 210 deg Serviceability - 60 mph Wind 210 deg 1.0D + 1.0W Service 240 deg Serviceability - 60 mph Wind 240 deg 1.0D + 1.0W Service 300 deg Serviceability - 60 mph Wind 300 deg 1.0D + 1.0W Service 330 deg

Serviceability - 60 mph Wind 330 deg

© 2007 - 2021 by ATC IP LLC. All rights reserved.

3/25/2021 1:26:25 PM

 Site Number:
 413161
 Code:
 ANSI/TIA-222-H
 © 2007 - 2021 by

Site Name: Baldwinsville NY SQA, NY Engineering Numb

Customer: T-MOBILE

Engineering Number: 13544814_C3_04

Tower Loading

Discrete Appurtenance Properties 1.2D + 1.0W

Elevation Description	Qty	Wt.	EPA	Length		Depth	\mathbf{K}_{a}	Orient.	Vert.	M _u		F _a (WL)	
(ft)		(lb)	(sf)	(ft)	(in)	(in)		Factor	Ecc.(ft)	(lb-ft)	(psf)	(lb)	(lb)
108.0 Ericsson Radio 4449	3	75	1.6	1.3	13.2	10.5	0.80	0.50	0.0	0.0	25.63	43	270
108.0 Ericsson RRUS 4415	3	46	1.8	1.4	13.4	5.9	0.80	0.50	0.0	0.0	25.63	48	166
108.0 Ericsson Air6449	3	104	5.7	2.8	20.6	8.6	0.80	0.63	0.0	0.0	25.63	187	374
108.0 Ericsson AIR32	3	132	6.5	4.7	12.9	8.7	0.80	0.71	0.0	0.0	25.63	242	476
108.0 Site Pro VFA12	3	300	14.4	0.0	0.0	0.0	0.75	0.75	0.0	0.0	25.63	529	1080
108.0 RFS APXVAALL24	3	123	20.2	8.0	24.0	8.5	0.80	0.63	0.0	0.0	25.63	667	442
99.00 CSS XAP-460-V	3	13	3.1	4.0	6.7	4.1	0.80	0.70	0.0	0.0	25.00	112	47
99.00 Commscope SBNHH-	2	50	11.4	8.0	11.9	7.1	0.80	0.54	0.0	0.0	25.00	210	119
99.00 CSS V7C-865-2i	6	37	11.9	8.0	12.5	7.0	0.80	0.69	0.0	0.0	25.00	834	263
99.00 CSS X7C-FRO-860-	1	49	13.4	8.0	14.6	8.2	0.80	1.00	0.0	0.0	25.00	228	58
98.00 Round Sector Frame	3	300	14.4	0.0	0.0	0.0	0.75	0.67	0.0	0.0	24.92	460	1080
90.00 VZW Unused	1	0	16.0	0.0	0.0	0.0	1.00	0.90	0.0	0.0	24.32	298	0
88.00 VZW Unused	1	0	16.0	0.0	0.0	0.0	1.00	0.90	0.0	0.0	24.17	296	0
78.00 EMS FV90-12-000AL2	9	30	8.1	6.0	12.0	7.0	0.80	0.69	0.0	0.0	23.35	802	324
78.00 Round Sector Frame	3	300	14.4	0.0	0.0	0.0	0.75	0.67	0.0	0.0	23.35	431	1080
77.00 Radio Waves SP2-2.4	1	22	4.0	2.0	24.0	0.0	1.00	1.00	0.0	0.0	23.26	78	26
66.00 Generic GPS	1	10	0.9	1.0	9.0	6.0	1.00	1.00	0.0	0.0	22.26	17	12
63.00 Generic GPS	1	10	0.9	1.0	9.0	6.0	1.00	1.00	0.0	0.0	21.97	17	12
59.00 Generic GPS	1	10	0.9	1.0	9.0	6.0	1.00	1.00	0.0	0.0	21.56	16	12
Totals	51	4868	466.1									5515	5841

Discrete Appurtenance Properties 0.9D + 1.0W

Elevation Description (ft)	Qty	Wt. (lb)	EPA (sf)	Length (ft)	Width (in)	Depth (in)	K _a	Orient. Factor	Vert. Ecc.(ft)	M _u (lb-ft)	Q _z F (psf)	F _a (WL) F (lb)	P _a (DL) (lb)
108.0 Ericsson Radio 4449	3	75	1.6	1.3	13.2	10.5	0.80	0.50	0.0	0.0	25.63	43	203
108.0 Ericsson RRUS 4415	3	46	1.8	1.4	13.4	5.9	0.80	0.50	0.0	0.0	25.63	48	124
108.0 Ericsson Air6449	3	104	5.7	2.8	20.6	8.6	0.80	0.63	0.0	0.0	25.63	187	281
108.0 Ericsson AIR32	3	132	6.5	4.7	12.9	8.7	0.80	0.71	0.0	0.0	25.63	242	357
108.0 Site Pro VFA12	3	300	14.4	0.0	0.0	0.0	0.75	0.75	0.0	0.0	25.63	529	810
108.0 RFS APXVAALL24	3	123	20.2	8.0	24.0	8.5	0.80	0.63	0.0	0.0	25.63	667	332
99.00 CSS XAP-460-V	3	13	3.1	4.0	6.7	4.1	0.80	0.70	0.0	0.0	25.00	112	35
99.00 Commscope SBNHH-	2	50	11.4	8.0	11.9	7.1	0.80	0.54	0.0	0.0	25.00	210	89
99.00 CSS V7C-865-2i	6	37	11.9	8.0	12.5	7.0	0.80	0.69	0.0	0.0	25.00	834	197
99.00 CSS X7C-FRO-860-	1	49	13.4	8.0	14.6	8.2	0.80	1.00	0.0	0.0	25.00	228	44
98.00 Round Sector Frame	3	300	14.4	0.0	0.0	0.0	0.75	0.67	0.0	0.0	24.92	460	810
90.00 VZW Unused	1	0	16.0	0.0	0.0	0.0	1.00	0.90	0.0	0.0	24.32	298	0
88.00 VZW Unused	1	0	16.0	0.0	0.0	0.0	1.00	0.90	0.0	0.0	24.17	296	0
78.00 EMS FV90-12-000AL2	9	30	8.1	6.0	12.0	7.0	0.80	0.69	0.0	0.0	23.35	802	243
78.00 Round Sector Frame	3	300	14.4	0.0	0.0	0.0	0.75	0.67	0.0	0.0	23.35	431	810
77.00 Radio Waves SP2-2.4	1	22	4.0	2.0	24.0	0.0	1.00	1.00	0.0	0.0	23.26	78	20
66.00 Generic GPS	1	10	0.9	1.0	9.0	6.0	1.00	1.00	0.0	0.0	22.26	17	9
63.00 Generic GPS	1	10	0.9	1.0	9.0	6.0	1.00	1.00	0.0	0.0	21.97	17	9
59.00 Generic GPS	1	10	0.9	1.0	9.0	6.0	1.00	1.00	0.0	0.0	21.56	16	9
Totals	51	4868	466.1									5515	4381

Discrete Appurtenance Properties 1.2D + 1.0Di + 1.0Wi

Elevation Description	Qty	Ice Wt	Ice EPA	Length	Width	Depth	K _a	Orient. Vert.	M.	Q _z I	F _a (WL)	P _a (DL)
(ft)	_	(lb)	(sf)	(ft)	(in)	(in)	_	Factor Ecc.(ft)	(lb-ft)	(psf)	(lb)	(lb)

© 2007 - 2021 by ATC IP LLC. All rights reserved.

3/25/2021 1:26:25 PM

Site Number: 413161 Code: ANSI/TIA-222-H

Site Name: Baldwinsville NY SQA, NY Engineering Number: 13544814_C3_04

Customer: T-MOBILE

Tower Loading

108.0	Ericsson Radio 4449	3	133	2.5	1.3	13.2	10.5	0.80	0.50	0.0	0.0	3.45	9	445
108.0	Ericsson RRUS 4415	3	94	2.7	1.4	13.4	5.9	0.80	0.50	0.0	0.0	3.45	10	308
108.0	Ericsson Air6449	3	236	7.2	2.8	20.6	8.6	0.80	0.63	0.0	0.0	3.45	32	772
108.0	Ericsson AIR32	3	287	8.6	4.7	12.9	8.7	0.80	0.71	0.0	0.0	3.45	43	941
108.0	Site Pro VFA12	3	657	30.5	0.0	0.0	0.0	0.75	0.75	0.0	0.0	3.45	151	2152
108.0	RFS APXVAALL24	3	501	23.8	8.0	24.0	8.5	0.80	0.63	0.0	0.0	3.45	106	1577
99.00	CSS XAP-460-V	3	78	4.9	4.0	6.7	4.1	0.80	0.70	0.0	0.0	3.37	23	242
99.00	Commscope SBNHH-	2	268	14.5	8.0	11.9	7.1	0.80	0.54	0.0	0.0	3.37	36	556
99.00	CSS V7C-865-2i	6	260	14.9	8.0	12.5	7.0	0.80	0.69	0.0	0.0	3.37	142	1602
99.00	CSS X7C-FRO-860-	1	303	17.0	8.0	14.6	8.2	0.80	1.00	0.0	0.0	3.37	39	313
98.00	Round Sector Frame	3	650	30.2	0.0	0.0	0.0	0.75	0.67	0.0	0.0	3.36	130	2131
90.00	VZW Unused	1	0	26.6	0.0	0.0	0.0	1.00	0.90	0.0	0.0	3.28	67	0
88.00	VZW Unused	1	0	26.6	0.0	0.0	0.0	1.00	0.90	0.0	0.0	3.25	66	0
78.00	EMS FV90-12-000AL2	9	215	9.3	6.0	12.0	7.0	0.80	0.69	0.0	0.0	3.14	124	1988
78.00	Round Sector Frame	3	643	29.8	0.0	0.0	0.0	0.75	0.67	0.0	0.0	3.14	120	2108
77.00	Radio Waves SP2-2.4	1	99	5.1	2.0	24.0	0.0	1.00	1.00	0.0	0.0	3.13	13	104
66.00	Generic GPS	1	37	1.5	1.0	9.0	6.0	1.00	1.00	0.0	0.0	3.00	4	39
63.00	Generic GPS	1	37	1.5	1.0	9.0	6.0	1.00	1.00	0.0	0.0	2.96	4	39
59.00	Generic GPS	1	36	1.5	1.0	9.0	6.0	1.00	1.00	0.0	0.0	2.90	4	38
	Totals	51	14382	703.1									1121	15355

Discrete Appurtenance Properties 1.0D + 1.0W Service

Elevation Description (ft)	Qty	Wt. (lb)	EPA (sf)	Length (ft)	Width (in)	Depth (in)	K _a	Orient. Factor	Vert. Ecc.(ft)	M _u (lb-ft)	Q _z (psf)	F _a (WL) (lb)	P _a (DL) (lb)
108.0 Ericsson Radio 4449	3	75	1.6	1.3	13.2	10.5	0.80	0.50	0.0	0.0	7.76	13	225
108.0 Ericsson RRUS 4415	3	46	1.8	1.4	13.4	5.9	0.80	0.50	0.0	0.0	7.76	15	138
108.0 Ericsson Air6449	3	104	5.7	2.8	20.6	8.6	0.80	0.63	0.0	0.0	7.76	57	312
108.0 Ericsson AIR32	3	132	6.5	4.7	12.9	8.7	0.80	0.71	0.0	0.0	7.76	73	397
108.0 Site Pro VFA12	3	300	14.4	0.0	0.0	0.0	0.75	0.75	0.0	0.0	7.76	160	900
108.0 RFS APXVAALL24	3	123	20.2	8.0	24.0	8.5	0.80	0.63	0.0	0.0	7.76	202	368
99.00 CSS XAP-460-V	3	13	3.1	4.0	6.7	4.1	0.80	0.70	0.0	0.0	7.57	34	39
99.00 Commscope SBNHH-	2	50	11.4	8.0	11.9	7.1	0.80	0.54	0.0	0.0	7.57	64	99
99.00 CSS V7C-865-2i	6	37	11.9	8.0	12.5	7.0	0.80	0.69	0.0	0.0	7.57	253	219
99.00 CSS X7C-FRO-860-	1	49	13.4	8.0	14.6	8.2	0.80	1.00	0.0	0.0	7.57	69	49
98.00 Round Sector Frame	3	300	14.4	0.0	0.0	0.0	0.75	0.67	0.0	0.0	7.55	139	900
90.00 VZW Unused	1	0	16.0	0.0	0.0	0.0	1.00	0.90	0.0	0.0	7.37	90	0
88.00 VZW Unused	1	0	16.0	0.0	0.0	0.0	1.00	0.90	0.0	0.0	7.32	90	0
78.00 EMS FV90-12-000AL2	9	30	8.1	6.0	12.0	7.0	0.80	0.69	0.0	0.0	7.08	243	270
78.00 Round Sector Frame	3	300	14.4	0.0	0.0	0.0	0.75	0.67	0.0	0.0	7.08	131	900
77.00 Radio Waves SP2-2.4	1	22	4.0	2.0	24.0	0.0	1.00	1.00	0.0	0.0	7.05	24	22
66.00 Generic GPS	1	10	0.9	1.0	9.0	6.0	1.00	1.00	0.0	0.0	6.75	_	10
63.00 Generic GPS	1	10	0.9	1.0	9.0	6.0	1.00	1.00	0.0	0.0	6.66	5	10
59.00 Generic GPS	1	10	0.9	1.0	9.0	6.0	1.00	1.00	0.0	0.0	6.53	5	10
Totals	51	4868	466.1									1671	4868

Site Number: 413161 Code: ANSI/TIA-222-H © 2007 - 2021 by ATC IP LLC. All rights reserved.

Site Name: Baldwinsville NY SQA, NY Engineering Number: 13544814_C3_04 3/25/2021 1:26:25 PM

Customer: T-MOBILE

Tower Loading

Linear Appurtenance Properties

Elev	Elev									Out			
From	То			Width	n Weight	Pct	Spread On	Bundling	Cluster	Of S	Spacing (Orientatio	n Ka
(ft)	(ft)	Description	Qty	(in)	(lb/ft) I	n Block	Faces	Arrangement	Dia (in)	Zone	(in)	Factor	Override
0.00	108.0	1 1/4" Coax	6	1.55	0.63	50	1	Block	0.00	N	1.00	1.00	0.00
0.00	108.0	1 5/8" Hybriflex	3	1.98	1.30	67	1	Block	0.00	N	1.00	1.00	0.00
10.00	100.0	Waveguide	2	1.50	6.00	100	1	Individual	0.00	N	1.00	1.00	0.00
10.00	99.00	1 5/8" Coax	18	1.98	0.82	67	1	Block	0.00	N	1.00	1.00	0.00
10.00	99.00	3/8" (0.38"-	6	0.38	0.23	100	1	Individual	0.00	N	1.00	1.00	0.00
0.00	78.00	Waveguide	1	1.50	6.00	100	1	Individual	0.00	N	1.00	1.00	0.00
10.00	78.00	7/8" Coax	9	1.09	0.33	100	1	Individual	0.00	N	1.00	1.00	0.00
10.00	77.00	7/8" Coax	1	1.09	0.33	10	2	Individual	0.00	N	1.00	1.00	0.00
10.00	66.00	1/2" Coax	2	0.63	0.15	100	2	Individual	0.00	N	1.00	1.00	0.00
10.00	63.00	1/2" Coax	1	0.63	0.15	100	2	Individual	0.00	N	1.00	1.00	0.00
10 00	59 00	1/2" Coax	1	0.63	0.15	100	1	Individual	0.00	N	1 00	1 00	0.00

3/25/2021 1:26:26 PM

Site Name: Baldwinsville NY SQA, NY

T-MOBILE Customer:

Site Number: 413161

Engineering Number: 13544814_C3_04

Equivalent Lateral Force Method

Spectral Response Acceleration for Short Period (S):	0.14
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.05
Long-Period Transition Period (T - Seconds):	6
Importance Factor (I _e):	1.00
Site Coefficient F _a :	1.60
Site Coefficient F _v :	2.40
Response Modification Coefficient (R):	3.00
Design Spectral Response Acceleration at Short Period (S ds):	0.15
Design Spectral Response Acceleration at 1.0 Second Period (S d1):	0.08
Seismic Response Coefficient (C s):	0.03
Upper Limit C _s :	0.03
Lower Limit C _s :	0.03
Period based on Rayleigh Method (sec):	0.84
Redundancy Factor (p):	1.30
Seismic Force Distribution Exponent (k):	1.17
Total Unfactored Dead Load:	15.33 k
Seismic Base Shear (E):	0.65 k

LoadCase 1.2D + 1.0Ev + 1.0Eh

Seismic

Section	Height Above Base (ft)	Weight (lb)	W _z (lb-ft)	C _{vx}	Horizontal Force (lb)	Vertical Force (lb)
7	110.00	687	167,379	0.081	53	845
6	90.00	1,350	260,060	0.126	82	1,661
5	72.56	1,165	174,570	0.085	55	1,434
4	62.56	465	58,594	0.028	18	572
3	50.00	2,090	202,601	0.098	64	2,572
2	30.00	2,358	125,772	0.061	39	2,902
1	10.00	2,344	34,604	0.017	11	2,884
Ericsson Radio 4449 B71 B85A	108.00	225	53,658	0.026	17	277
Ericsson RRUS 4415 B25	108.00	138	32,910	0.016	10	170
Ericsson Air6449 B41	108.00	312	74,406	0.036	23	384
Ericsson AIR32 B66Aa/B2a	108.00	397	94,581	0.046	30	488
Site Pro VFA12	108.00	900	214,632	0.104	67	1,107
RFS APXVAALL24 43-U-NA20	108.00	368	87,856	0.043	28	453
CSS XAP-460-V	99.00	39	8,401	0.004	3	48
Commscope SBNHH-1D65C	99.00	99	21,369	0.010	7	122
CSS V7C-865-2i	99.00	219	47,175	0.023	15	269
CSS X7C-FRO-860-VR4	99.00	49	10,447	0.005	3	60
Round Sector Frame	98.00	900	191,583	0.093	60	1,107
VZW Unused Reserve (2304 sqin)	90.00	0	0	0.000	0	0
VZW Unused Reserve (2304 sqin)	88.00	0	0	0.000	0	0
EMS FV90-12-000AL2	78.00	270	44,012	0.021	14	332
Round Sector Frame	78.00	900	146,708	0.071	46	1,107
Radio Waves SP2-2.4	77.00	22	3,533	0.002	1	27

Site Number: 413161 Code: ANSI/TIA-222-H © 2007 - 2021 by ATC IP LLC. All rights reserved.

Site Name: Baldwinsville NY SQA, NY Engineering Number: 13544814_C3_04 3/25/2021 1:26:26 PM

Customer: T-MOBILE

Equivalent Lateral Force Method Generic GPS 66.00 10 1,341 0 12 0.001 1,270 **Generic GPS** 63.00 10 0 12 0.001 59.00 **Generic GPS** 10 0.001 0 12 1,176

15,327 2,058,639 1.000 646 18,860

LoadCase 0.9D - 1.0Ev + 1.0Eh

Seismic (Reduced DL)

	Height Above Base	Weight	W_z		Horizontal Force	Vertical Force	
Section	(ft)	(lb)	(lb-ft)	C _{vx}	(lb)	(lb)	
7	110.00	687	167,379	0.081	53	597	
6	90.00	1,350	260,060	0.126	82	1,173	
5	72.56	1,165	174,570	0.085	55	1,013	
4	62.56	465	58,594	0.028	18	404	
3	50.00	2,090	202,601	0.098	64	1,818	
2	30.00	2,358	125,772	0.061	39	2,050	
1	10.00	2,344	34,604	0.017	11	2,038	
Ericsson Radio 4449 B71 B85A	108.00	225	53,658	0.026	17	196	
Ericsson RRUS 4415 B25	108.00	138	32,910	0.016	10	120	
Ericsson Air6449 B41	108.00	312	74,406	0.036	23	271	
Ericsson AIR32 B66Aa/B2a	108.00	397	94,581	0.046	30	345	
Site Pro VFA12	108.00	900	214,632	0.104	67	783	
RFS APXVAALL24 43-U-NA20	108.00	368	87,856	0.043	28	320	
CSS XAP-460-V	99.00	39	8,401	0.004	3	34	
Commscope SBNHH-1D65C	99.00	99	21,369	0.010	7	86	
CSS V7C-865-2i	99.00	219	47,175	0.023	15	190	
CSS X7C-FRO-860-VR4	99.00	49	10,447	0.005	3	42	
Round Sector Frame	98.00	900	191,583	0.093	60	783	
VZW Unused Reserve (2304 sqin)	90.00	0	0	0.000	0	0	
VZW Unused Reserve (2304 sqin)	88.00	0	0	0.000	0	0	
EMS FV90-12-000AL2	78.00	270	44,012	0.021	14	235	
Round Sector Frame	78.00	900	146,708	0.071	46	783	
Radio Waves SP2-2.4	77.00	22	3,533	0.002	1	19	
Generic GPS	66.00	10	1,341	0.001	0	9	
Generic GPS	63.00	10	1,270	0.001	0	9	
Generic GPS	59.00	10	1,176	0.001	0	9	
		15,327	2,058,639	1.000	646	13,327	

© 2007 - 2021 by ATC IP LLC. All rights reserved.

3/25/2021 1:26:26 PM

Site Name: Baldwinsville NY SQA, NY

Engineering Number: 13544814_C3_04

ANSI/TIA-222-H

Code:

Customer: T-MOBILE

Site Number: 413161

Force/Stress Summary

Section: 1 1		Bot Elev	(ft): 0.0	00		Hei	ght (f	t): 20.	000						
	Pu		Len	Bra	cing	0/_		F'v I	Phic Pn I	Num	Num	_	Bear	Hea	
Max Compression Member	(kip)	Load Case	(ft)	X	Y		KL/R	•			Holes	(kip)	(kip)	%	Controls
LEG PX - 3" DIA PIPE	-104.28	1.2D + 1.0W Normal	6.51	50	50	50	34.3	50.0	124.72	0	0	0.00	0.00	8:	3 Member X
HORIZ	0.00		0.000	0	0	0			0.00	Ö	Ö	0.00	0.00	(
DIAG SAE - 2.5X2.5X0.1875	-3.35	1.2D + 1.0W 90 deg	15.70	50	50	50	190.4	36.0	7.12	1	1	8.84	10.44	40	6 Member Z
Max Tension Member	Pu (kip)	Load Case	Fy (ksi)	Fu (ksi)		it Pn (ip)	Num Bolts	Num Holes		ıv	Bear phiRn (kip)	ph	Shear it Pn kip)	Use %	Controls
LEG PX - 3" DIA PIPE	92.89	0.9D + 1.0W 60 deg	50	6	5 13	5.90	0	0	0.	00	0.0	00		68	Member
HORIZ	0.00		0		-	0.00	0	0		00	0.0		0.00	0	
DIAG SAE - 2.5X2.5X0.1875	3.50	1.2D + 1.0W 90 deg	36	5	8 2	5.99	1	1	8.	84	6.2	20	8.77	56	Bolt Bear
May Calina Farras	ou cip) Load	l Case		phiRi (kip		_	se %	Num Bolts	Bolt Ty	pe					
•		+ 1.0W 180 deg		_	.00		0	0							
•		+ 1.0W Normal		_	.00		0		=10 405						
		+ 1.0W 180 deg + 1.0W Normal		173 201	-		29 57	4	7/8 A35	4-BC					
	7.41 1.20	+ 1.0W Normal		201	.52		31								
Section: 2 1		Bot Elev	(ft): 20	.00		Hei	ght (f	t): 20.	000						
			Len	Dro	nin a	0/			Dhia Dn	Num	Mirro		Bear		
	Pu		Len	Dia	unu	%		F'V I	FINIC FILL		num	phiRnv	/phiRn	Use	
Max Compression Member	Pu (kip)	Load Case	(ft)	Х	cing Y		KL/R	•			Holes	phiRnv (kip)	/ phiRn (kip)	Use %	Controls
LEG PST - 3" DIA PIPE	(kip) -87.54	1.2D + 1.0W Normal	(ft) 6.51	X 50	Y 50	Z 50	33.7	(ksi)	(kip)	Bolts 0	Holes 0	(kip)	(kip)	94	4 Member X
LEG PST - 3" DIA PIPE HORIZ	(kip) -87.54 0.00	1.2D + 1.0W Normal	(ft) 6.51 0.000	50 0	Y 50 0	50 0	33.7 0.0	50.0 0.0	92.36 0.00	Bolts 0 0	Holes 0 0	0.00 0.00	(kip) 0.00 0.00	% 94	4 Member X
LEG PST - 3" DIA PIPE	(kip) -87.54 0.00	1.2D + 1.0W Normal	(ft) 6.51	X 50	Y 50	50 0	33.7	50.0 0.0	(kip)	Bolts 0	Holes 0	(kip)	(kip)	% 94	4 Member X
LEG PST - 3" DIA PIPE HORIZ	(kip) -87.54 0.00 -3.54	1.2D + 1.0W Normal	(ft) 6.51 0.000	50 0	50 0 50	50 0 50	33.7 0.0 154.0 Num	50.0 0.0	92.36 0.00 10.89 Shea phiRi	0 0 1 r	Holes 0 0	0.00 0.00 8.84 Blk ph	(kip) 0.00 0.00	% 94	4 Member X
LEG PST - 3" DIA PIPE HORIZ DIAG SAE - 2.5X2.5X0.1875	(kip) -87.54 0.00 -3.54 Pu (kip)	1.2D + 1.0W Normal	6.51 0.000 12.70	50 0 50 Fu (ksi)	50 0 50	50 0 50 it Pn	33.7 0.0 154.0 Num	50.0 0.0 36.0	92.36 0.00 10.89 Shea phiRi	0 0 1 r	0 0 1 Bear phiRn	0.00 0.00 8.84 Blk ph	0.00 0.00 10.44 Shear it Pn	94 (4) Use %	4 Member X D Bolt Shear
LEG PST - 3" DIA PIPE HORIZ DIAG SAE - 2.5X2.5X0.1875 Max Tension Member LEG PST - 3" DIA PIPE HORIZ	(kip) -87.54 0.00 -3.54 Pu (kip) 78.61 0.00	1.2D + 1.0W Normal 1.2D + 1.0W 90 deg Load Case 0.9D + 1.0W 60 deg	(ft) 6.51 0.000 12.70 Fy (ksi) 50 0	50 0 50 Fu (ksi)	Y 50 0 50 Ph (k	50 0 50 it Pn kip) 0.35 0.00	33.7 0.0 154.0 Num Bolts	(ksi) 50.0 0.0 36.0 Num Holes	(kip) 92.36 0.00 10.89 Shea phiRi s (kip) 0.	0 0 1 1 r	Holes 0 0 1 1 Bear phiRn (kip) 0.0 0.0	0.00 0.00 8.84 Blk ph (l	(kip) 0.00 0.00 10.44 Shear it Pn kip)	% 94 40 Use %	4 Member X D Bolt Shear Controls Member
LEG PST - 3" DIA PIPE HORIZ DIAG SAE - 2.5X2.5X0.1875 Max Tension Member LEG PST - 3" DIA PIPE	(kip) -87.54 0.00 -3.54 Pu (kip) 78.61 0.00	1.2D + 1.0W Normal 1.2D + 1.0W 90 deg Load Case 0.9D + 1.0W 60 deg	(ft) 6.51 0.000 12.70 Fy (ksi) 50	50 0 50 Fu (ksi)	Y 50 0 50 Ph (k	50 0 50 it Pn cip)	33.7 0.0 154.0 Num Bolts	50.0 0.0 36.0 Num Holes	(kip) 92.36 0.00 10.89 Shea phiRi s (kip) 0.	0 0 1 1 r	Holes 0 0 1 Bear phiRn (kip) 0.0	0.00 0.00 8.84 Blk ph (l	0.00 0.00 10.44 Shear it Pn	% 94 40 Use %	4 Member X D Bolt Shear Controls
LEG PST - 3" DIA PIPE HORIZ DIAG SAE - 2.5X2.5X0.1875 Max Tension Member LEG PST - 3" DIA PIPE HORIZ DIAG SAE - 2.5X2.5X0.1875	(kip) -87.54 0.00 -3.54 Pu (kip) 78.61 0.00 3.41	1.2D + 1.0W Normal 1.2D + 1.0W 90 deg Load Case 0.9D + 1.0W 60 deg	(ft) 6.51 0.000 12.70 Fy (ksi) 50 0	50 0 50 Fu (ksi)	Y 50 0 50 Ph (k 5 10 0 8 2 2 mt	50 0 50 it Pn kip) 0.35 0.00 5.99	33.7 0.0 154.0 Num Bolts	(ksi) 50.0 0.0 36.0 Num Holes	(kip) 92.36 0.00 10.89 Shea phiRi s (kip) 0.	0 0 1 r 1 00 00 84	Holes 0 0 1 1 Bear phiRn (kip) 0.0 0.0	0.00 0.00 8.84 Blk ph (l	(kip) 0.00 0.00 10.44 Shear it Pn kip)	% 94 40 Use %	4 Member X D Bolt Shear Controls Member
LEG PST - 3" DIA PIPE HORIZ DIAG SAE - 2.5X2.5X0.1875 Max Tension Member LEG PST - 3" DIA PIPE HORIZ DIAG SAE - 2.5X2.5X0.1875 Max Splice Forces	(kip) -87.54 0.00 -3.54 Pu (kip) 78.61 0.00 3.41	1.2D + 1.0W Normal 1.2D + 1.0W 90 deg Load Case 0.9D + 1.0W 60 deg 1.2D + 1.0W 90 deg	(ft) 6.51 0.000 12.70 Fy (ksi) 50 0	50 0 50 Fu (ksi) 6 5 phiR (kip)	Y 50 0 50 Ph (k 5 10 0 8 2 2 mt	50 0 50 it Pn kip) 0.35 0.00 5.99	33.7 0.0 154.0 Num Bolts 0 0	(ksi) 50.0 0.0 36.0 Num Holes 0 0 1	(kip) 92.36 0.00 10.89 Shea phiRi (kip) 0. 8.	0 0 1 r 1 00 00 84	Holes 0 0 1 1 Bear phiRn (kip) 0.0 0.0	0.00 0.00 8.84 Blk ph (l	(kip) 0.00 0.00 10.44 Shear it Pn kip)	% 94 40 Use %	4 Member X D Bolt Shear Controls Member
LEG PST - 3" DIA PIPE HORIZ DIAG SAE - 2.5X2.5X0.1875 Max Tension Member LEG PST - 3" DIA PIPE HORIZ DIAG SAE - 2.5X2.5X0.1875 Max Splice Forces Top Tension Top Compression	(kip) -87.54 0.00 -3.54 Pu (kip) 78.61 0.00 3.41 Pu (sip) Load 62.46 0.9D 72.51 1.2D	1.2D + 1.0W Normal 1.2D + 1.0W 90 deg Load Case 0.9D + 1.0W 60 deg 1.2D + 1.0W 90 deg I Case + 1.0W 60 deg + 1.0W 120 deg	(ft) 6.51 0.000 12.70 Fy (ksi) 50 0	50 0 50 Fu (ksi) 6 5 phiR (kip)	Y 50 0 50 50 Ph (k 5 10 0 3 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10	50 0 50 it Pn kip) 0.35 0.00 5.99	33.7 0.0 154.0 Num Bolts 0 0 1	(ksi) 50.0 0.0 36.0 Num Holes 0 1 Num Bolts 0	(kip) 92.36 0.00 10.89 Shea phiRis (kip) 0. 8. Bolt Ty	0 0 1 1 r r nv 00 00 84	Holes 0 0 1 1 Bear phiRn (kip) 0.0 0.0	0.00 0.00 8.84 Blk ph (l	(kip) 0.00 0.00 10.44 Shear it Pn kip)	% 94 40 Use %	4 Member X D Bolt Shear Controls Member
LEG PST - 3" DIA PIPE HORIZ DIAG SAE - 2.5X2.5X0.1875 Max Tension Member LEG PST - 3" DIA PIPE HORIZ DIAG SAE - 2.5X2.5X0.1875 Max Splice Forces Top Tension Top Compression	(kip) -87.54 0.00 -3.54 Pu (kip) 78.61 0.00 3.41 Pu (sip) Load 62.46 0.9D 72.51 1.2D	1.2D + 1.0W Normal 1.2D + 1.0W 90 deg Load Case 0.9D + 1.0W 60 deg 1.2D + 1.0W 90 deg	(ft) 6.51 0.000 12.70 Fy (ksi) 50 0	X 50 0 50 Fu (ksi) 6 5 phiR (kip) 0 166	Y 50 0 50 50 Ph (k 5 10 0 3 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10	50 0 50 it Pn kip) 0.35 0.00 5.99	33.7 0.0 154.0 Num Bolts 0 0 1	(ksi) 50.0 0.0 36.0 Num Holes 0 1 Num Bolts	(kip) 92.36 0.00 10.89 Shea phiRi (kip) 0. 8.	0 0 1 1 r r nv 00 00 84	Holes 0 0 1 1 Bear phiRn (kip) 0.0 0.0	0.00 0.00 8.84 Blk ph (l	(kip) 0.00 0.00 10.44 Shear it Pn kip)	% 94 40 Use %	4 Member X D Bolt Shear Controls Member

© 2007 - 2021 by ATC IP LLC. All rights reserved.

3/25/2021 1:26:26 PM

Site Name: Baldwinsville NY SQA, NY

T-MOBILE Customer:

Site Number: 413161

Engineering Number: 13544814_C3_04

ANSI/TIA-222-H

Force/Stress Summary

Code:

Section: 3 1		Bot Elev	(ft): 40	.00		Hei	ght (1	t): 20.	.000						
			` '				•	•				Shear	Bear		
	Pu		Len	Bra	cing	%		F'y F	Phic Pn N	lum	Num	phiRnv	phiRn	Use	
Max Compression Member	(kip)	Load Case	(ft)	X	Υ	Z	KL/R	(ksi)	(kip) B	olts	Holes	(kip)	(kip)	%	Controls
LEG PX - 2-1/2" DIA PIPE		1.2D + 1.0W Norma		50	50	50	42.3		88.84	0	0	0.00	0.00	_	7 Member X
HORIZ	0.00		0.000	0	0	0	0.0		0.00	0	0	0.00	0.00		0
DIAG SAE - 2X2X0.1875	-3.15	5 1.2D + 1.0W 90 deg	12.09	50	50	50	184.1	36.0	6.04	1	1	8.84	10.44	5	2 Member Z
									Shear	•	Bear	Blk	Shear		
Max Tension Member	Pu (kip)	Load Case	Fy (ksi)	Fu (ksi)		it Pn (ip)	Num Bolts	Num Holes	•	V	phiRn (kip)	•	it Pn (ip)	Use %	Controls
LEG PX - 2-1/2" DIA PIPE	` ' ' '	0.9D + 1.0W 60 deg		<u> </u>	<u>`</u> 5 10	<u> </u>	0	0	· · · ·	00	0.0		1.7	61	Member
HORIZ	0.00	1	0		0	0.00	0	0	0.0	00	0.0	0	0.00	0	
DIAG SAE - 2X2X0.1875	3.24	1.2D + 1.0W 90 deg	36	5	8 1	9.89	1	1	8.8	34	6.2	0	6.73	52	Bolt Bear
	Pu			phiR	nt	u	se	Num							
Max Splice Forces		l Case		(kip		_	%	Bolts	Bolt Typ	е					
Top Tension		+ 1.0W 180 deg		-	.00		0	0							
Top Compression		+ 1.0W Normal		_	.00		0								
Bot Tension Bot Compression	62.46 0.9D 0.00	+ 1.0W 60 deg		120 0	.41 .00		52 0	4	0.75" A3	325					
Section: 4 1		Bot Elev	(ft): 60	.00		Hei	ght (1	t): 5.1	25						
			` '				•	,				Shear	Bear		
	Pu		Len	Bra	cing	%		F'y F	Phic Pn N	lum	Num	phiRnv	phiRn	Use	
Max Compression Member	(kip)	Load Case	(ft)	X	Υ	Z	KL/R	(kei)	/leim\ D	olts	Holes	(kip)	(kip)	%	Controls
LEG PST - 2-1/2" DIA PIP								(KSI)	(kip) B		110103				
		1.2D + 1.0W Norma		50	50	50	30.9	50.0	71.50	0	0	0.00	0.00		9 Member X
HORIZ	0.00)	0.000	0	0	0	30.9 0.0	50.0 0.0	71.50 0.00	0	0	0.00	0.00	-	D
HORIZ DIAG SAE - 1.75X1.75X0.1	0.00		0.000			0	30.9	50.0 0.0	71.50	0	0			-	
	0.00)	0.000	0	0	0	30.9 0.0	50.0 0.0	71.50 0.00	0 0 1	0	0.00 8.84	0.00	-	D
	0.00 2 -2.83 Pu) 3 1.2D + 1.0W 90 deg	0.000 9.563 Fy	0 50 Fu	0 50	0 50 it Pn	30.9 0.0 165.3 Num	50.0 0.0 36.0	71.50 0.00 4.40 Shear phiRny	0 0 1	0 0 1 Bear phiRn	0.00 8.84 Blk	0.00 6.96 Shear it Pn	-	D
DIAG SAE - 1.75X1.75X0.1	0.00 2 -2.83 Pu (kip))	0.000 9.563 Fy (ksi)	0 50	0 50 Ph (k	0 50	30.9 0.0 165.3 Num	50.0 0.0 36.0 Num	71.50 0.00 4.40 Shear phiRn s (kip)	0 0 1	0 0 1	0.00 8.84 Blk : phi	0.00 6.96 Shear	6 Use	0 4 Member Z Controls
DIAG SAE - 1.75X1.75X0.1 Max Tension Member	0.00 2 -2.83 Pu (kip)	1.2D + 1.0W 90 deg Load Case 0.9D + 1.0W 60 deg	0.000 9.563 Fy (ksi)	0 50 Fu (ksi)	0 50 Ph (k	0 50 it Pn (ip)	30.9 0.0 165.3 Num Bolts	50.0 0.0 36.0 Num	71.50 0.00 4.40 Shear phiRn s (kip)	0 0 1	0 0 1 Bear phiRn (kip)	0.00 8.84 Blk s phi (I	0.00 6.96 Shear it Pn	Use	Controls Member
Max Tension Member LEG PST - 2-1/2" DIA PIP	0.00 -2.83 Pu (kip) 44.89 0.00	1.2D + 1.0W 90 deg Load Case 0.9D + 1.0W 60 deg	0.000 9.563 Fy (ksi) 50	0 50 Fu (ksi)	0 50 Ph (k 5 7	0 50 it Pn kip)	30.9 0.0 165.3 Num Bolts	50.0 0.0 36.0 Num Holes	71.50 0.00 4.40 Shear phiRny s (kip)	0 0 1 1	0 0 1 Bear phiRn (kip)	0.00 8.84 Blk : phi (I	0.00 6.96 Shear it Pn kip)	6 Use %	Controls Member
Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ DIAG SAE - 1.75X1.75X0.1	0.00 -2.83 Pu (kip) 44.89 0.00	Load Case 0.9D + 1.0W 60 deg	0.000 9.563 Fy (ksi) 50	0 50 Fu (ksi)	0 50 Ph (k 5 7 0	0 50 it Pn (ip) 6.68 0.00 1.41	30.9 0.0 165.3 Num Bolts	50.0 0.0 36.0 Num Holes	71.50 0.00 4.40 Shear phiRnv s (kip)	0 0 1 1	0 0 1 Bear phiRn (kip) 0.0	0.00 8.84 Blk : phi (I	0.00 6.96 Shear it Pn kip)	Use %	Controls Member
Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ DIAG SAE - 1.75X1.75X0.1	0.00 2 -2.83 Pu (kip) 44.89 0.00 12 2.84	Load Case 0.9D + 1.0W 60 deg	0.000 9.563 Fy (ksi) 50	0 50 Fu (ksi) 6	0 50 Ph (k 5 7 0 8 1	0 50 it Pn cip) 6.68 0.00 1.41	30.9 0.0 165.3 Num Bolts 0	50.0 0.0 36.0 Num Holes	71.50 0.00 4.40 Shear phiRnv s (kip)	0 0 1 1 v	0 0 1 Bear phiRn (kip) 0.0	0.00 8.84 Blk : phi (I	0.00 6.96 Shear it Pn kip)	Use %	Controls Member
Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ DIAG SAE - 1.75X1.75X0.1 Max Splice Forces Top Tension	Pu (kip) Load 39.56 0.9D	Load Case 0.9D + 1.0W 90 deg 1.2D + 1.0W 60 deg 1.2D + 1.0W 90 deg 1 Case + 1.0W 180 deg	0.000 9.563 Fy (ksi) 50	Fu (ksi) 6 5 phiR (kip	0 50 Ph (k 5 7 0 8 1 nt)	0 50 it Pn cip) 6.68 0.00 1.41	30.9 0.0 165.3 Num Bolts 0 0	50.0 0.0 36.0 Num Holes 0 0	71.50 0.00 4.40 Shear phiRny s (kip) 0.0 8.8	0 0 1 1 v	0 0 1 Bear phiRn (kip) 0.0	0.00 8.84 Blk : phi (I	0.00 6.96 Shear it Pn kip)	Use %	Controls Member
Max Tension Member LEG PST - 2-1/2" DIA PIPHORIZ DIAG SAE - 1.75X1.75X0.1 Max Splice Forces Top Tension Top Compression	Pu (kip) 44.89 0.00 2 2.84 Pu (kip) Load 39.56 0.9D 46.77 1.2D	Load Case 0.9D + 1.0W 90 deg 1.2D + 1.0W 60 deg 1.2D + 1.0W 90 deg 1 Case + 1.0W 180 deg + 1.0W Normal	0.000 9.563 Fy (ksi)	Fu (ksi) 6 5 phiR (kip	0 50 Ph (k 5 7 0 8 1 nnt)	0 50 it Pn cip) 6.68 0.00 1.41	30.9 0.0 165.3 Num Bolts 0 0 1	50.0 0.0 36.0 Num Holes 0 0 1 Num Bolts	71.50 0.00 4.40 Shear phiRnvs (kip) 0.0 0.0 8.8	0 0 1 1	0 0 1 Bear phiRn (kip) 0.0	0.00 8.84 Blk : phi (I	0.00 6.96 Shear it Pn kip)	Use %	Controls Member
Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ DIAG SAE - 1.75X1.75X0.1 Max Splice Forces Top Tension	Pu (kip) 44.89 0.00 2 2.84 Pu (kip) Load 39.56 0.9D 46.77 1.2D	Load Case 0.9D + 1.0W 90 deg 1.2D + 1.0W 60 deg 1.2D + 1.0W 90 deg 1 Case + 1.0W 180 deg	0.000 9.563 Fy (ksi)	0 50 Fu (ksi) 6 5 phiR (kip	0 50 Ph (k 5 7 0 8 1 nt)	0 50 it Pn cip) 6.68 0.00 1.41	30.9 0.0 165.3 Num Bolts 0 0	50.0 0.0 36.0 Num Holes 0 0 1	71.50 0.00 4.40 Shear phiRny s (kip) 0.0 8.8	0 0 1 1	0 0 1 Bear phiRn (kip) 0.0	0.00 8.84 Blk : phi (I	0.00 6.96 Shear it Pn kip)	Use %	Controls Member

© 2007 - 2021 by ATC IP LLC. All rights reserved. ANSI/TIA-222-H

3/25/2021 1:26:26 PM

Site Name: Baldwinsville NY SQA, NY

T-MOBILE Customer:

Site Number: 413161

Engineering Number: 13544814_C3_04

Force/Stress Summary

Code:

Section: 5 1		Bot Elev	(ft): 65	.13		Hei	ght (1	ft): 14.	875						
												Shear	Bear		
	Pu		Len		cing				Phic Pn	Num	Num	•	/ phiRn	Use	
Max Compression Member	(kip)	Load Case	(ft)	Х	Υ	Z	KL/R	(ksi)	(kip)	Bolts	Holes	(kip)	(kip)	%	Controls
LEG PST - 2-1/2" DIA PIP	_	1.2D + 1.0W Norma	4.88	100	100		61.9		57.95		0	0.00	0.00		Member X
HORIZ SAE - 1.75X1.75X0.12		1.2D + 1.0W 60 deg	6.475		100		223.9		2.40		1	8.84	6.96		Member Z
DIAG SAE - 1.75X1.75X0.12	-2.73	1.2D + 1.0W 90 deg	9.136	50	50	50	158.0	36.0	4.82	1	1	8.84	6.96	56	6 Member Z
									She	ar	Bear	Blk	Shear		
May Tanaian Mamban	Pu	Land Coop	Fy	Fu			Num	Num	phiF		phiRn		it Pn	Use	Controls
Max Tension Member	(kip)		(ksi)	(ksi)		kip)	Bolts				(kip)		kip)	70	
LEG PST - 2-1/2" DIA PIP		0.9D + 1.0W 60 deg	50 I 36			76.68 11.41	0 1	0 1		0.00	0.0		2 04		Member
HORIZ SAE - 1.75X1.75X0.12 DIAG SAE - 1.75X1.75X0.12) 1.2D + 1.0W Norma 3 1.2D + 1.0W 90 deg	ı 36			11.41	1	1		3.84 3.84	4.1 4.1		3.81 3.81	12 77	Blk Shear Blk Shear
DIAG SAE - 1.75X1.75X0.12	2.93	1.2D + 1.0W 90 deg	30	•	00	11.41	'	'	•	0.04	4.1	13	3.01	"	DIK SHEAI
	Pu			phiR	nt	U	se	Num							
Max Splice Forces (I	kip) Load	I Case		(kip)	(%	Bolts	Bolt T	уре					
•		+ 1.0W 180 deg			0.00		0	0							
•		+ 1.0W Normal			0.00		0								
Bot Tension 3 Bot Compression	39.56 0.9D 0.00	+ 1.0W 180 deg			0.00		0 0								
Section: 6 1		Bot Elev	(ft): 80	0.00		Hei	ght (1	ft): 20.	000						
			` ,			Ì	•	•				Shear	Poor		
												Sileai	Dear		
	Pu		Len	Bra	cing	ı %		F'y F	Phic Pn	Num	Num	_	phiRn	Use	
Max Compression Member	Pu (kip)	Load Case	Len (ft)	Bra X	cing Y		KL/R	-			Num Holes	_		Use %	Controls
Max Compression Member LEG PST - 2-1/2" DIA PIP	(kip)	Load Case	(ft)	Х	Υ	Z 100	49.4	(ksi) 50.0		Bolts		phiRn	/ phiRn	%	Controls Member X
LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125	(kip) -26.22 -0.32	1.2D + 1.0W Norma 1.2D + 1.0W 60 deg	(ft) 3.90 6.450	100 100	Y 100 100	2 100 100	49.4 261.5	(ksi) 50.0 36.0	(kip) 64.14 1.51	Bolts 0 1	Holes 0 1	phiRnv (kip) 0.00 8.84	v phiRn (kip) 0.00 6.96	% 40 21	Member X Member Z
LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125	(kip) -26.22 -0.32	1.2D + 1.0W Norma	(ft) 3.90	X 100	Y 100	2 100 100	49.4	(ksi) 50.0 36.0	(kip) 64.14	Bolts 0 1	Holes 0	phiRnv (kip) 0.00	/ phiRn (kip) 0.00	% 40 21	Member X
LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125	(kip) -26.22 -0.32	1.2D + 1.0W Norma 1.2D + 1.0W 60 deg	(ft) 3.90 6.450	100 100	Y 100 100	2 100 100	49.4 261.5	(ksi) 50.0 36.0	(kip) 64.14 1.51 4.41	Bolts 0 1	0 1 1	0.00 8.84 8.84	v phiRn (kip) 0.00 6.96 6.96	% 40 21	Member X Member Z
LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 DIAG SAE - 1.5X1.5X0.125	-26.22 -0.32 -3.00	1.2D + 1.0W Norma 1.2D + 1.0W 60 deg 1.2D + 1.0W 90 deg	(ft) 3.90 6.450 7.537	100 100 50	100 100 50	100 100 50	49.4 261.5 152.8 Num	50.0 36.0 36.0 Num	(kip) 64.14 1.51 4.41 She phiF	Bolts 0 1 1	0 1 1 Bear phiRn	9hiRnv (kip) 0.00 8.84 8.84 Blk ph	v phiRn (kip) 0.00 6.96 6.96 Shear it Pn	% 40 21 67 Use	Member X Member Z Member Z
LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 DIAG SAE - 1.5X1.5X0.125	-26.22 -0.32 -3.00	1.2D + 1.0W Norma 1.2D + 1.0W 60 deg 1.2D + 1.0W 90 deg	(ft) 3.90 6.450 7.537	100 100 50	100 100 50	100 100 50	49.4 261.5 152.8	50.0 36.0 36.0 Num	(kip) 64.14 1.51 4.41 She phiF	Bolts 0 1 1	0 1 1	9hiRnv (kip) 0.00 8.84 8.84 Blk ph	v phiRn (kip) 0.00 6.96 6.96 Shear	% 40 21 67 Use	Member X Member Z
LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 DIAG SAE - 1.5X1.5X0.125 Max Tension Member LEG PST - 2-1/2" DIA PIP	(kip) -26.22 -0.32 -3.00 Pu (kip) 24.21	1.2D + 1.0W Norma 1.2D + 1.0W 60 deg 1.2D + 1.0W 90 deg Load Case	(ft) 3.90 6.450 7.537 Fy (ksi)	X 100 100 50 Fu (ksi)	Y 100 100 50 PI) (2 100 100 50 nit Pn kip)	49.4 261.5 152.8 Num Bolts	50.0 36.0 36.0 Num Holes	64.14 1.51 4.41 She phiF 6 (kip	Bolts 0 1 1 ar thrv 0)	Holes 0 1 1 Bear phiRn (kip)	0.00 8.84 8.84 Blk ph	v phiRn (kip) 0.00 6.96 6.96 Shear it Pn kip)	% 40 21 67 Use %	Member X Member Z Member Z Controls Member
Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125	(kip) -26.22 -0.32 -3.00 Pu (kip) 24.21 0.37	1.2D + 1.0W Norma 1.2D + 1.0W 60 deg 1.2D + 1.0W 90 deg Load Case 0.9D + 1.0W 60 deg 1.2D + 1.0W Norma	(ft) 3.90 6.450 7.537 Fy (ksi) 50 36	X 100 100 50 Fu (ksi)	Y 100 100 50 PI) (2 100 100 50 nit Pn kip) 76.68 9.45	49.4 261.5 152.8 Num Bolts	(ksi) 50.0 36.0 36.0 Num Holes	(kip) 64.14 1.51 4.41 She phiF	Bolts 1 1 ar 8nv 0) 0.00 3.84	Holes 0 1 1 Bear phiRn (kip) 0.0 4.1	phiRnv (kip) 0.00 8.84 8.84 Blk ph (l)	v phiRn (kip) 0.00 6.96 6.96 Shear it Pn kip)	% 40 21 67 Use % 31 11	Member X Member Z Member Z Controls Member Blk Shear
Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125	(kip) -26.22 -0.32 -3.00 Pu (kip) 24.21 0.37	1.2D + 1.0W Norma 1.2D + 1.0W 60 deg 1.2D + 1.0W 90 deg Load Case	(ft) 3.90 6.450 7.537 Fy (ksi)	X 100 100 50 Fu (ksi)	Y 100 100 50 PI) (2 100 100 50 nit Pn kip)	49.4 261.5 152.8 Num Bolts	50.0 36.0 36.0 Num Holes	(kip) 64.14 1.51 4.41 She phiF	Bolts 0 1 1 ar thrv 0)	Holes 0 1 1 Bear phiRn (kip)	phiRnv (kip) 0.00 8.84 8.84 Blk ph (l)	v phiRn (kip) 0.00 6.96 6.96 Shear it Pn kip)	% 40 21 67 Use %	Member X Member Z Member Z Controls Member Blk Shear
Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 DIAG SAE - 1.5X1.5X0.125	(kip) -26.22 -0.32 -3.00 Pu (kip) 24.21 0.37	1.2D + 1.0W Norma 1.2D + 1.0W 60 deg 1.2D + 1.0W 90 deg Load Case 0.9D + 1.0W 60 deg 1.2D + 1.0W Norma	(ft) 3.90 6.450 7.537 Fy (ksi) 50 36	X 100 100 50 Fu (ksi)	Y 100 100 50 PI) (65 58	2 100 100 50 nit Pn kip) 76.68 9.45 9.45	49.4 261.5 152.8 Num Bolts	(ksi) 50.0 36.0 Num Holes 0 1	(kip) 64.14 1.51 4.41 She phiF	Bolts 1 1 ar 8nv 0) 0.00 3.84	Holes 0 1 1 Bear phiRn (kip) 0.0 4.1	phiRnv (kip) 0.00 8.84 8.84 Blk ph (l)	v phiRn (kip) 0.00 6.96 6.96 Shear it Pn kip)	% 40 21 67 Use % 31 11	Member X Member Z Member Z Controls Member Blk Shear
Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 DIAG SAE - 1.5X1.5X0.125 Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 DIAG SAE - 1.5X1.5X0.125	(kip) -26.22 -0.32 -3.00 Pu (kip) 24.21 0.37 2.95	1.2D + 1.0W Norma 1.2D + 1.0W 60 deg 1.2D + 1.0W 90 deg Load Case 0.9D + 1.0W 60 deg 1.2D + 1.0W Norma	(ft) 3.90 6.450 7.537 Fy (ksi) 50 36	X 100 100 50 Fu (ksi)	Y 1000 1000 500 PI () () () () () () () () () (Z 100 100 50 nit Pn kip) 76.68 9.45 9.45	49.4 261.5 152.8 Num Bolts	(ksi) 50.0 36.0 36.0 Num Holes 0 1	(kip) 64.14 1.51 4.41 She phiF	Bolts 0 1 1 ar nv 0) 0.00 3.84	Holes 0 1 1 Bear phiRn (kip) 0.0 4.1	phiRnv (kip) 0.00 8.84 8.84 Blk ph (l)	v phiRn (kip) 0.00 6.96 6.96 Shear it Pn kip)	% 40 21 67 Use % 31 11	Member X Member Z Member Z Controls Member Blk Shear
Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 DIAG SAE - 1.5X1.5X0.125 Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 DIAG SAE - 1.5X1.5X0.125 Max Splice Forces (I	(kip) -26.22 -0.32 -3.00 Pu (kip) 24.21 0.37 2.95	1.2D + 1.0W Norma 21.2D + 1.0W 60 deg 1.2D + 1.0W 90 deg Load Case 0.9D + 1.0W 60 deg 71.2D + 1.0W Norma 61.2D + 1.0W 90 deg	(ft) 3.90 6.450 7.537 Fy (ksi) 50 36	X 100 100 50 Fu (ksi)	Y 1000 1000 500 PI () () () () () () () () () (Z 100 100 50 nit Pn kip) 76.68 9.45 9.45	49.4 261.5 152.8 Num Bolts 0 1	(ksi) 50.0 36.0 Num Holes 0 1	(kip) 64.14 1.51 4.41 She phiF (kip)	Bolts 0 1 1 ar nv 0) 0.00 3.84	Holes 0 1 1 Bear phiRn (kip) 0.0 4.1	phiRnv (kip) 0.00 8.84 8.84 Blk ph (l)	v phiRn (kip) 0.00 6.96 6.96 Shear it Pn kip)	% 40 21 67 Use % 31 11	Member X Member Z Member Z Controls Member Blk Shear
Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 DIAG SAE - 1.5X1.5X0.125 Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 DIAG SAE - 1.5X1.5X0.125 Max Splice Forces (I	(kip) -26.22 -0.32 -3.00 Pu (kip) 24.21 0.37 2.95 Pu kip) Load 3.52 0.9D 5.99 1.2D	1.2D + 1.0W Norma 1.2D + 1.0W 60 deg 1.2D + 1.0W 90 deg Load Case 0.9D + 1.0W 60 deg 1.2D + 1.0W Norma 1.2D + 1.0W 90 deg 1 Case + 1.0W 180 deg + 1.0W Normal	(ft) 3.90 6.450 7.537 Fy (ksi) 50 36	X 100 100 50 Fu (ksi)	Y 1000 1000 500 PI () ((55 5 5 5 5 5 5 5 5 5 6 8 6 8 6 8 6 8 6	Z 100 100 50 nit Pn kip) 76.68 9.45 9.45	49.4 261.5 152.8 Num Bolts 0 1 1 se %	(ksi) 50.0 36.0 36.0 Num Holes 0 1 1 Num Bolts 0	(kip) 64.14 1.51 4.41 She phiF 6 (kip	Bolts 0 1 1 ar Rnv 0) 0.00 3.84 3.84	Holes 0 1 1 Bear phiRn (kip) 0.0 4.1	phiRnv (kip) 0.00 8.84 8.84 Blk ph (l)	v phiRn (kip) 0.00 6.96 6.96 Shear it Pn kip)	% 40 21 67 Use % 31 11	Member X Member Z Member Z Controls Member Blk Shear
Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 DIAG SAE - 1.5X1.5X0.125 Max Tension Member LEG PST - 2-1/2" DIA PIP HORIZ SAE - 1.5X1.5X0.125 DIAG SAE - 1.5X1.5X0.125 Max Splice Forces (I	(kip) -26.22 -0.32 -3.00 Pu (kip) 24.21 0.37 2.95 Pu kip) Load 3.52 0.9D 5.99 1.2D	1.2D + 1.0W Norma 1.2D + 1.0W 60 deg 1.2D + 1.0W 90 deg Load Case 0.9D + 1.0W 60 deg 1.2D + 1.0W Norma 1.2D + 1.0W 90 deg	(ft) 3.90 6.450 7.537 Fy (ksi) 50 36	X 100 100 50 Fu (ksi)	Y 1000 1000 500 PI () () () () () () () () () (Z 100 100 50 nit Pn kip) 76.68 9.45 9.45	49.4 261.5 152.8 Num Bolts 0 1 1	(ksi) 50.0 36.0 36.0 Num Holes 0 1 Num Bolts	(kip) 64.14 1.51 4.41 She phiF (kip)	Bolts 0 1 1 ar Rnv 0) 0.00 3.84 3.84	Holes 0 1 1 Bear phiRn (kip) 0.0 4.1	phiRnv (kip) 0.00 8.84 8.84 Blk ph (l)	v phiRn (kip) 0.00 6.96 6.96 Shear it Pn kip)	% 40 21 67 Use % 31 11	Member X Member Z Member Z Controls Member Blk Shear

© 2007 - 2021 by ATC IP LLC. All rights reserved. ANSI/TIA-222-H Site Number: 413161 Code:

3/25/2021 1:26:26 PM

Site Name: Baldwinsville NY SQA, NY 13544814_C3_04 **Engineering Number:**

Customer: **T-MOBILE**

Force/Stress Summary

Section: 7 1			Bot Elev	(ft): 10	0.0		Hei	ght (ft): 20.	.000						
		Pu		Len	Bra	cing	y %		F'y	Phic Pn	Num	Num	Shear phiRnv	Bear phiRn	Use	
Max Compression Member	•	(kip)	Load Case	(ft)	X	Υ	Z	KL/R	(ksi)	(kip)	Bolts	Holes	(kip)	(kip)	%	Controls
LEG PST - 2-1/2" DIA PIF HORIZ	•	-5.91 0.00	1.2D + 1.0W Normal	0.25 0.000	100 0	100 0				76.62 0.00	_	0	0.00 0.00	0.00		7 Member X
DIAG SAE - 1.5X1.5X0.12	5	-1.12	1.2D + 1.0W 90 deg	7.537	50	50	50	152.8	36.0	4.41	1	1	8.84	6.96	2	5 Member Z
Max Tension Member		Pu (kip)	Load Case	Fy (ksi)	Fu (ksi)		hit Pn kip)	Num Bolts			nv	Bear phiRn (kip)	phi	Shear it Pn kip)	Use %	Controls
LEG PST - 2-1/2" DIA PIF HORIZ	•	3.29 0.00	1.2D + 1.0W 60 deg	50 0	6	55 0	76.68 0.00	0	-).00).00	0.0		0.00	4	
DIAG SAE - 1.5X1.5X0.12	5	1.11	1.2D + 1.0W 90 deg	36	5	8	9.45	1	1	8	3.84	4.1	13	3.13	35	Blk Shear
Max Splice Forces	Pu (kip)	Load	Case		phiR (kip		_	se %	Num Bolts	Bolt T	ype					
Top Tension Top Compression	0.00 0.18		+ 1.0Ev + 1.0Eh			0.00 0.00		0	0							
Bot Tension Bot Compression	3.52 0.00		+ 1.0W 180 deg			1.36 0.00		4 0	4	5/8 A3	25					

Site Number: 413161 Code: ANSI/TIA-222-H © 2007 - 2021 by ATC IP LLC. All rights reserved.

3/25/2021 1:26:26 PM

Site Name: Baldwinsville NY SQA, NY Engineering Number: 13544814_C3_04

Customer: T-MOBILE

Detailed Reactions

Load Case	Radius (ft)	Elevation (ft)	Azimuth (deg)	Node	FX (kip)	FY (kip)	FZ (kip)	(-) = Uplift	(+) = Dowr
1.2D + 1.0W Normal	8.46	00.00	0	1	0.00	107.09	-11.45		
	8.46	00.00	120	1a	3.88	-44.35	-3.63		
	8.46	00.00	240	1b	-3.88	-44.35	-3.63		
1.2D + 1.0W 60 deg	8.46	00.00	0	1	-1.13	54.68	-5.64		
	8.46	00.00	120	1a	-5.45	54.68	1.84		
	8.46	00.00	240	1b	-8.81	-90.96	-5.09		
1.2D + 1.0W 90 deg	8.46	00.00	0	1	-1.32	6.13	-0.36		
	8.46	00.00	120	1a	-8.67	91.05	4.23		
	8.46	00.00	240	1b	-8.02	-78.79	-3.87		
1.2D + 1.0W 120 deg	8.46	00.00	0	1	-1.20	-44.35	5.18		
	8.46	00.00	120	1a	-9.91 5.09	107.09	5.72		
	8.46	00.00	240	1b	-5.08	-44.35	-1.55		
1.2D + 1.0W 180 deg	8.46	00.00	0	1	0.00	-90.96	10.18		
	8.46	00.00	120	1a	-4.31	54.68	3.80		
	8.46	00.00	240	1b	4.31	54.68	3.80		
1.2D + 1.0W 210 deg	8.46	00.00	0	1	0.65	-78.79	8.88		
_	8.46	00.00	120	1a	0.35	6.13	1.32		
	8.46	00.00	240	1b	8.00	91.05	5.39		
1.2D + 1.0W 240 deg	8.46	00.00	0	1	1.20	-44.35	5.18		
_	8.46	00.00	120	1a	5.08	-44.35	-1.55		
	8.46	00.00	240	1b	9.91	107.09	5.72		
1.2D + 1.0W 300 deg	8.46	00.00	0	1	1.13	54.68	-5.64		
	8.46	00.00	120	1a	8.81	-90.96	-5.09		
	8.46	00.00	240	1b	5.45	54.68	1.84		
1.2D + 1.0W 330 deg	8.46	00.00	0	1	0.67	91.05	-9.62		
	8.46	00.00	120	1a	7.36	-78.79	-5.01		
	8.46	00.00	240	1b	0.97	6.13	-0.97		
0.9D + 1.0W Normal	8.46	00.00	0	1	0.00	105.39	-11.35		
	8.46	00.00	120	1a	3.97	-45.80	-3.68		
	8.46	00.00	240	1b	-3.97	-45.80	-3.68		
0.9D + 1.0W 60 deg	8.46	00.00	0	1	-1.14	53.07	-5.54		
	8.46	00.00	120	1a	-5.36	53.07	1.78		
	8.46	00.00	240	1b	-8.90	-92.34	-5.14		
0.9D + 1.0W 90 deg	8.46	00.00	0	1	-1.33	4.60	-0.26		
	8.46	00.00	120	1a	-8.58	89.38	4.18		
	8.46	00.00	240	1b	-8.10	-80.19	-3.92		
0.9D + 1.0W 120 deg	8.46	00.00	0	1	-1.20	-45.80	5.28		
	8.46	00.00	120	1a	-9.82	105.39	5.67		
	8.46	00.00	240	1b	-5.17	-45.80	-1.60		
0.9D + 1.0W 180 deg	8.46	00.00	0	1	0.00	-92.34	10.28		
	8.46	00.00	120	1a	-4.23	53.07	3.75		
	8.46	00.00	240	1b	4.23	53.07	3.75		
0.9D + 1.0W 210 deg	8.46	00.00	0	1	0.65	-80.19	8.98		
_	8.46	00.00	120	1a	0.44	4.60	1.28		

3/25/2021 1:26:26 PM

Site Number: 413161		Code:			ANSI/TIA-222-H		© 2007 - 2021 by A	ATC IP LLC. All rights reserved.
			in a Niconala					
Dalawiiio iii o ayi, iii		Engineeri	ing Numb	er:	13544814_C3_04			3/25/2021 1:26:26 PM
Customer: T-MOBILE								
1.2D + 1.0Ev + 1.0Eh 180 deg M1	8.46	00.00	0	1	0.00	1.91	-0.02	
	8.46	00.00	120	1a	-0.51	8.24	0.32	
	8.46	00.00	240	1b	0.51	8.24	0.32	
1.2D + 1.0Ev + 1.0Eh 210 deg M1	8.46	00.00	0	1	0.01	2.56	-0.08	
1.2D + 1.0EV + 1.0EH 210 deg M1	8.46	00.00	120	1 1a	-0.34	6.13	0.23	
	8.46	00.00	240	1b	0.63	9.69	0.38	
1.2D + 1.0Ev + 1.0Eh 240 deg M1	8.46	00.00	0	1	0.02	4.07	-0.22	
	8.46 8.46	00.00 00.00	120 240	1a 1b	-0.18 0.68	4.07 10.24	0.13 0.39	
	0.40	00.00	240	ID	0.00	10.24	0.39	
1.2D + 1.0Ev + 1.0Eh 300 deg M1	8.46	00.00	0	1	0.02	8.18	-0.59	
1.25 + 1.0EV + 1.0EH 300 deg M1	8.46	00.00	120	1a	-0.03	2.01	0.02	
	8.46	00.00	240	1b	0.53	8.18	0.28	
1.2D + 1.0Ev + 1.0Eh 330 deg M1	8.46	00.00	0	1	0.01	9.69	-0.73	
	8.46 8.46	00.00 00.00	120 240	1a 1b	-0.08 0.37	2.56 6.13	0.03 0.18	
	0.40	00.00	240	ID	0.37	0.13	0.10	
0.9D - 1.0Ev + 1.0Eh Normal M1	8.46	00.00	0	1	0.00	8.54	-0.67	
0.36 - 1.0EV + 1.0EH NOTHIAI WI	8.46	00.00	120	1a	-0.09	2.22	0.03	
	8.46	00.00	240	1b	0.09	2.22	0.03	
0.9D - 1.0Ev + 1.0Eh 60 deg M1	8.46	00.00	0	1	-0.02	6.38	-0.48	
	8.46	00.00	120 240	1a 1b	-0.42	6.38	0.22	
	8.46	00.00	240	ID	-0.08	0.22	-0.04	
0.9D - 1.0Ev + 1.0Eh 90 deg M1	8.46	00.00	0	1	-0.03	4.33	-0.29	
0.3D - 1.0EV + 1.0EH 30 deg WI	8.46	00.00	120	¹ 1a	-0.54	7.98	0.30	
	8.46	00.00	240	1b	-0.05	0.68	-0.01	
0.9D - 1.0Ev + 1.0Eh 120 deg M1	8.46	00.00	0	1	-0.02	2.27	-0.10	
	8.46 8.46	00.00 00.00	120 240	1a 1b	-0.57 0.07	8.44 2.27	0.33 0.07	
	0.40	00.00	240	ID	0.07	2.21	0.07	
0.9D - 1.0Ev + 1.0Eh 180 deg M1	8.46	00.00	0	1	0.00	0.12	0.10	
0.02 1.02 v 1.02.0 100 dog	8.46	00.00	120	1a	-0.40	6.44	0.26	
	8.46	00.00	240	1b	0.40	6.44	0.26	
0.9D - 1.0Ev + 1.0Eh 210 deg M1	8.46	00.00	0	1	0.01	0.77	0.04	
	8.46 8.46	00.00 00.00	120 240	1a 1b	-0.23 0.52	4.33 7.89	0.17 0.32	
	0.40	00.00	240	16	0.52	7.03	0.32	
0.9D - 1.0Ev + 1.0Eh 240 deg M1	8.46	00.00	0	1	0.02	2.27	-0.10	
· ·	8.46	00.00	120	1a	-0.07	2.27	0.07	
	8.46	00.00	240	1b	0.57	8.44	0.33	
0.9D - 1.0Ev + 1.0Eh 300 deg M1	8.46	00.00	0	1	0.02	6.38	-0.48	
	8.46 8.46	00.00 00.00	120 240	1a 1b	0.08 0.42	0.22 6.38	-0.04 0.22	
	01.10	00.00	2.0		02	0.00	0.22	
0.9D - 1.0Ev + 1.0Eh 330 deg M1	8.46	00.00	0	1	0.01	7.89	-0.61	
	8.46	00.00	120	1a	0.03	0.77	-0.03	
	8.46	00.00	240	1b	0.26	4.33	0.12	
4.0D - 4.0W Comitee Name 1	0.40	00.00	_	_	0.00	25 15	0.0-	
1.0D + 1.0W Service Normal	8.46 8.46	00.00 00.00	0 120	1 1a	0.00 0.98	35.45 -10.06	-3.67 -0.99	
	8.46	00.00	240	1b	-0.98	-10.06	-0.99	
		-		_	-		-	
1.0D + 1.0W Service 60 deg	8.46	00.00	0	1	-0.34	19.70	-1.92	
-	8.46	00.00	120	1a	-1.83	19.70	0.66	
	8.46	00.00	240	1b	-2.47	-24.07	-1.43	

Site Number:	413161		Code:		AN	NSI/TIA-222-H		© 2007 - 2021 by ATC	CIP LLC. All rights reserved.
Site Name:	Baldwinsville NY	' SQA, NY	Engineering	Numbe	er: 13	544814_C3_04			3/25/2021 1:26:26 PM
Customer:	T-MOBILE								
1.0D + 1.0W S	orvice 90 dea	8.46	00.00	0	1	-0.40	5.11	-0.33	
1.00 + 1.000 3	ervice 30 deg	8.46	00.00	120	1a	-2.80	30.63	1.38	
		8.46	00.00	240	1b	-2.23	-20.41	-1.06	
1.0D + 1.0W S	ervice 120 deg	8.46	00.00	0	1	-0.36	-10.06	1.34	
	•	8.46	00.00	120	1a	-3.17	35.45	1.83	
		8.46	00.00	240	1b	-1.34	-10.06	-0.36	
1.0D + 1.0W S	ervice 180 deg	8.46	00.00	0	1	0.00	-24.07	2.85	
	_	8.46	00.00	120	1a	-1.49	19.70	1.25	
		8.46	00.00	240	1b	1.49	19.70	1.25	
1.0D + 1.0W S	ervice 210 deg	8.46	00.00	0	1	0.20	-20.41	2.46	
		8.46	00.00	120	1a	-0.08	5.11	0.51	
		8.46	00.00	240	1b	2.60	30.63	1.73	
1.0D + 1.0W S	ervice 240 deg	8.46	00.00	0	1	0.36	-10.06	1.34	
		8.46	00.00	120	1a	1.34	-10.06	-0.36	
		8.46	00.00	240	1b	3.17	35.45	1.83	
1.0D + 1.0W S	ervice 300 deg	8.46	00.00	0	1	0.34	19.70	-1.92	
		8.46	00.00	120	1a	2.47	-24.07	-1.43	
		8.46	00.00	240	1b	1.83	19.70	0.66	
1.0D + 1.0W S	ervice 330 deg	8.46	00.00	0	1	0.20	30.63	-3.12	
		8.46	00.00	120	1a	2.03	-20.41	-1.40	
		8.46	00.00	240	1b	0.48	5.11	-0.18	
Max Uplift:	92.34 (kip)	Moment Ice:	311.06 (kip-ft)	Mo	oment:	1,281.41 (kij	o-ft) 1	.2D + 1.0W Normal	
Max Down:	107.09(kip)	Total Down Ice:	59.38 (kip)	Total	Down:	18.39 (kij			
Max Shear:	11.45 (kip)	Total Shear Ice:	4.60 (kip)	Total	Shear:	18.70 (kij	-		

3/25/2021 1:26:26 PM

Site Name: Baldwinsville NY SQA, NY Engineering Number: 13544814_C3_04

Customer: T-MOBILE

Deflections and Rotations

Load Case		Elevation	Deflection	Twist	Sway	Resultant
199 mph Normal with No Ice						
199 mph Normal with No Ice	109 mph Normal with No Ice				0.8011	
199 mph Normal with No Ice 99.75 0.525 0.0897 0.3250 0.3260 199 mph Normal with No Ice 99.75 0.812 0.0692 0.3254 0.9254 199 mph Normal with No Ice 99.75 0.812 0.0692 0.3254 0.9254 199 mph Normal with No Ice 59.75 0.812 0.0693 0.0693 0.3254 199 mph 60 degree with No Ice 59.75 0.281 0.0522 0.7572 0.7572 0.9759 0.9759 0.9759 0.0752 0.7572 0.7572 0.9759 0.9759 0.0725 0.0752 0.7572 0.07570 0.9755 0.0725 0.0725 0.0725 0.0725 0.07570 0.0725 0.072	•					
199 mph Normal with No Ice 98.05 0.841 0.0692 0.2244 0.2244 109 mph Normal with No Ice 198.05 0.815 0.06924 0.0524 0.0244 109 mph Normal with No Ice 198.05 0.355 0.0694 0.4344 0.8448 0.9757 109 mph 60 degree with No Ice 65.13 0.336 0.0508 0.5648 0.5670 109 mph 60 degree with No Ice 79.75 0.507 0.0725 0.0508 0.5648 0.5670 109 mph 60 degree with No Ice 79.75 0.507 0.0725 0.09081 0.9081	•					
109 mph Normal with No Ice 99.75 0.812 0.0692 0.9254 0.9254 109 mph Normal with No Ice 108.055 0.935 0.0694 0.9254 0.9274 109 mph 60 degree with No Ice 59.75 0.281 0.0522 0.7572 0.7572 109 mph 60 degree with No Ice 74.88 0.447 0.0610 0.6630 0.6657 109 mph 60 degree with No Ice 78.75 0.507 0.0723 0.7991 0.8013 109 mph 60 degree with No Ice 88.05 0.620 0.0723 0.7991 0.8013 109 mph 60 degree with No Ice 88.05 0.620 0.0723 0.7991 0.8013 109 mph 60 degree with No Ice 108.05 0.933 0.0720 0.8171 0.8171 109 mph 60 degree with No Ice 108.05 0.933 0.0720 0.8171 0.8171 109 mph 90 degree with No Ice 59.75 0.223 0.05980 0.6857 109 mph 90 degree with No Ice 56.13 0.339 0.0572 0.5809 0.5837 109 mph 90 degree with No Ice 56.13 0.339 0.0572 0.5809 0.5837 109 mph 90 degree with No Ice 77.75 0.511 0.0810 0.8891 0.8895 109 mph 90 degree with No Ice 78.75 0.511 0.0810 0.8895 0.99 mph 90 degree with No Ice 79.75 0.511 0.0810 0.8895 0.99 mph 90 degree with No Ice 99.75 0.511 0.0810 0.8895 0.99 mph 90 degree with No Ice 99.75 0.511 0.0810 0.8895 0.8995 0.99 mph 90 degree with No Ice 99.75 0.702 0.0811 0.8890 0.8895 0.99 mph 90 degree with No Ice 99.75 0.702 0.0811 0.8908 0.8917 0.99 mph 90 degree with No Ice 99.75 0.792 0.0811 0.8908 0.8917 0.99 mph 90 degree with No Ice 99.75 0.792 0.0811 0.8908 0.8917 0.99 mph 90 degree with No Ice 99.75 0.792 0.0811 0.8908 0.8917 0.99 mph 90 degree with No Ice 99.75 0.792 0.0811 0.8908 0.8917 0.99 mph 90 degree with No Ice 99.75 0.792 0.0811 0.8908 0.8917 0.99 mph 90 degree with No Ice 99.75 0.792 0.7970	•					
109 mph Normal with No Ice 109 mph 60 degree with No Ice 109 mph 80 degree with No Ice 109 mph 120 degree with	•			0.0697		
199 mph 60 degree with No Ice	•					
199 mph 60 degree with No Ice	109 mph Normal with No Ice	108.05		0.0694		0.8448
109 mph 80 degree with No Ice	•					
109 mph 60 degree with No Ice	109 mph 60 degree with No Ice	65.13	0.336	0.0508	0.5648	0.5670
109 mph 50 degree with No Ice 88.05 0.520 0.0724 0.981 0.8816 109 mph 50 degree with No Ice 108.05 0.903 0.0724 0.981 0.8816 109 mph 50 degree with No Ice 108.05 0.903 0.0720 0.8171 109 mph 90 degree with No Ice 65.13 0.339 -0.0580 0.7491 0.7497 109 mph 90 degree with No Ice 65.13 0.339 -0.0580 0.7491 0.7497 109 mph 90 degree with No Ice 74.88 0.450 -0.0681 0.8873 109 mph 90 degree with No Ice 79.75 0.511 -0.0810 0.8974 0.8898 109 mph 90 degree with No Ice 88.05 0.625 -0.0814 0.8054 0.8088 109 mph 90 degree with No Ice 99.75 0.792 -0.0811 0.8094 0.8088 109 mph 90 degree with No Ice 99.75 0.792 -0.0811 0.8094 0.8088 109 mph 90 degree with No Ice 108.05 0.911 -0.0810 0.8229 0.8239 109 mph 90 degree with No Ice 108.05 0.911 -0.0810 0.8229 0.8239 109 mph 90 degree with No Ice 108.05 0.911 -0.0810 0.8229 0.8239 109 mph 120 degree with No Ice 65.13 0.348 0.0602 0.5855 0.5875 109 mph 120 degree with No Ice 65.13 0.348 0.0602 0.5855 0.5875 109 mph 120 degree with No Ice 79.75 0.525 0.0698 0.9405 0.9405 109 mph 120 degree with No Ice 79.75 0.525 0.0698 0.9405 0.9405 109 mph 120 degree with No Ice 99.75 0.812 0.0699 0.9254 0.9254 109 mph 120 degree with No Ice 99.75 0.812 0.0699 0.9254 0.9254 109 mph 120 degree with No Ice 99.75 0.812 0.0699 0.9254 0.9254 109 mph 120 degree with No Ice 99.75 0.812 0.0699 0.9254 0.9254 109 mph 120 degree with No Ice 99.75 0.812 0.0699 0.9254 0.9254 109 mph 180 degree with No Ice 99.75 0.812 0.0699 0.9254 0.9254 109 mph 180 degree with No Ice 99.75 0.812 0.0699 0.9254 0.9254 109 mph 180 degree with No Ice 99.75 0.860 0.0681 0.0888 109 mph 180 degree with No Ice 99.75 0.850 0.0716 0.0801 0.0801 109 mph 180 degree with No Ice 99.75 0.	•					
199 mph 60 degree with No Ice 99.75 0.785 0.0724 0.8961 0.8961 199 mph 60 degree with No Ice 108.05 0.903 0.0720 0.8171 0.8171 199 mph 90 degree with No Ice 65.75 0.283 -0.0580 0.7491 0.7497 199 mph 90 degree with No Ice 65.13 0.339 -0.0572 0.5809 0.5837 199 mph 90 degree with No Ice 74.88 0.450 -0.0688 0.6774 0.8809 199 mph 90 degree with No Ice 79.75 0.511 -0.0810 0.8974 0.8808 199 mph 90 degree with No Ice 88.05 0.625 -0.0814 0.8004 0.8088 199 mph 90 degree with No Ice 99.75 0.792 -0.0811 0.8904 0.8088 199 mph 90 degree with No Ice 99.75 0.792 -0.0811 0.8904 0.8088 199 mph 90 degree with No Ice 108.05 0.911 -0.0810 0.8229 0.8239 199 mph 120 degree with No Ice 59.75 0.291 0.503 0.8013 0.8013 199 mph 120 degree with No Ice 59.75 0.291 0.503 0.8013 0.8013 199 mph 120 degree with No Ice 59.75 0.291 0.503 0.8013 0.8013 199 mph 120 degree with No Ice 74.88 0.462 0.0600 0.8681 0.6886 199 mph 120 degree with No Ice 74.88 0.462 0.0600 0.8681 0.6886 199 mph 120 degree with No Ice 88.05 0.641 0.0705 0.8250 0.8280 199 mph 120 degree with No Ice 99.75 0.812 0.699 0.9254 0.9254 0.9991		79.75				0.9081
199 mph 50 degree with No Ice 108.05 0.903 0.0720 0.8171 0.8171 109 mph 90 degree with No Ice 59.75 0.283 -0.0580 0.744 0.7497 109 mph 90 degree with No Ice 65.13 0.339 -0.0572 0.5809 0.5837 109 mph 90 degree with No Ice 74.88 0.450 -0.0688 0.6774 0.6809 109 mph 90 degree with No Ice 88.05 0.625 -0.0814 0.8064 0.8085 109 mph 90 degree with No Ice 88.05 0.625 -0.0814 0.8064 0.8088 109 mph 90 degree with No Ice 88.05 0.625 -0.0814 0.8064 0.8088 109 mph 90 degree with No Ice 108.05 0.911 -0.0810 0.8229 0.8239 109 mph 90 degree with No Ice 108.05 0.911 -0.0810 0.8229 0.8239 109 mph 90 degree with No Ice 65.13 0.348 0.0502 0.5855 0.5875 109 mph 120 degree with No Ice 65.13 0.348 0.0502 0.5855 0.5875 109 mph 120 degree with No Ice 77.88 0.462 0.0600 0.6861 0.6886 109 mph 120 degree with No Ice 79.75 0.525 0.0699 0.9254 0.9254 109 mph 120 degree with No Ice 88.05 0.641 0.0705 0.8250 0.3280 109 mph 120 degree with No Ice 88.05 0.641 0.0705 0.8250 0.3254 109 mph 120 degree with No Ice 89.75 0.812 0.0699 0.9254 0.9254 109 mph 120 degree with No Ice 108.05 0.935 0.0701 0.8434 0.848 0.900	•					
109 mph 90 degree with No Ice					0.8961	0.8961
109 mph 90 degree with No Ice	•					
109 mph 90 degree with No Ice				-0.0580		0.7497
109 mph 90 degree with No Ice	•					
109 mph 90 degree with No Ice	109 mph 90 degree with No Ice	74.88		-0.0688	0.6774	0.6809
109 mph 90 degree with No Ice	•					
108 mph 90 degree with No Ice 108.05 0.911 -0.0810 0.8229 0.8239 109 mph 120 degree with No Ice 65.13 0.348 0.0502 0.5855 0.5875 109 mph 120 degree with No Ice 67.13 0.348 0.0502 0.5855 0.5875 109 mph 120 degree with No Ice 79.75 0.525 0.0600 0.6861 0.6886 0.9405 0.	•	88.05	0.625	-0.0814	0.8054	0.8088
109 mph 120 degree with No Ice	, ,					
109 mph 120 degree with No Ice	•			-0.0810		
109 mph 120 degree with No Ice	, ,					
109 mph 120 degree with No Ice	109 mph 120 degree with No Ice	65.13	0.348	0.0502		0.5875
109 mph 120 degree with No Ice 88.05 0.641 0.0705 0.8250 0.8280 109 mph 120 degree with No Ice 99.75 0.812 0.0699 0.9254 0.9254 109 mph 120 degree with No Ice 108.05 0.935 0.0701 0.8434 0.8448 109 mph 180 degree with No Ice 59.75 0.281 0.0512 0.7570 0.7570 109 mph 180 degree with No Ice 65.13 0.336 0.0499 0.5648 0.5677 109 mph 180 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 180 degree with No Ice 88.05 0.507 0.0716 0.9081 0.9081 109 mph 180 degree with No Ice 88.05 0.620 0.0715 0.7991 0.8013 109 mph 180 degree with No Ice 99.75 0.785 0.0716 0.8961 0.9861 109 mph 210 degree with No Ice 108.05 0.903 0.0713 0.8171 0.8171 109 mph 210 degree with No Ice 59.75 0.283 0.0289 0.5807 109 mph 21	•					
109 mph 120 degree with No Ice	109 mph 120 degree with No Ice	79.75	0.525	0.0698	0.9405	0.9405
109 mph 120 degree with No Ice 59.75 0.281 0.0512 0.7570 0.7570 0.7570 0.99 mph 180 degree with No Ice 65.13 0.336 0.0499 0.5564 0.5670 0.99 mph 180 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 0.99 mph 180 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 0.99 mph 180 degree with No Ice 79.75 0.507 0.0716 0.9981 0.9081 0.9081 0.99 mph 180 degree with No Ice 88.05 0.620 0.0715 0.7991 0.8013 0.99 mph 180 degree with No Ice 99.75 0.785 0.0716 0.8961 0.8961 0.99 mph 180 degree with No Ice 99.75 0.785 0.0716 0.8961 0.8961 0.99 mph 180 degree with No Ice 108.05 0.903 0.0713 0.8171 0.8171 0.8171 0.99 mph 210 degree with No Ice 59.75 0.283 0.0298 0.7490 0.7496 0.99 mph 210 degree with No Ice 65.13 0.339 0.0288 0.5809 0.5837 0.99 mph 210 degree with No Ice 74.88 0.450 0.0349 0.6773 0.6808 0.99 mph 210 degree with No Ice 79.75 0.511 0.0420 0.8974 0.8984 0.99 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8984 0.99 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8988 0.99 mph 210 degree with No Ice 99.75 0.511 0.0420 0.8974 0.8984 0.99 mph 210 degree with No Ice 99.75 0.511 0.0420 0.8908 0.8916 0.99 mph 210 degree with No Ice 99.75 0.591 0.0420 0.8908 0.8916 0.99 mph 210 degree with No Ice 99.75 0.792 0.0420 0.8908 0.8916 0.99 mph 240 degree with No Ice 59.75 0.291 0.0444 0.8013 0.8013 0.99 mph 240 degree with No Ice 59.75 0.291 0.0444 0.8013 0.8013 0.99 mph 240 degree with No Ice 59.75 0.525 0.0689 0.9405 0.9806 0.9806 0.99 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.9405 0.9405 0.99 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.9405 0.9405 0.99 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.9405 0.9405 0.99 mph 240 degree with No Ice 59.75 0.281 0.0512 0.7572 0.7572 0.99 mph 240 degree with No Ice 59.75 0.812 0.0690 0.9254 0.9254 0.9254 0.99 mph 240 degree with No Ice 59.75 0.281 0.0512 0.7572 0.7572 0.99 mph 240 degree with No Ice 59.75 0.281 0.0512 0.7572 0.7572 0.99 mph 300 degree with No Ice 59.75 0.281 0.0512 0.0690 0.9254 0.9254 0.99 mph 300 degree with No Ice 5	•					
109 mph 180 degree with No Ice 65.13 0.36 0.0499 0.5648 0.5670 109 mph 180 degree with No Ice 65.13 0.336 0.0499 0.5648 0.5670 109 mph 180 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 180 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 180 degree with No Ice 88.05 0.620 0.0715 0.7991 0.8013 109 mph 180 degree with No Ice 99.75 0.785 0.785 0.0716 0.9961 0.8961 109 mph 180 degree with No Ice 108.05 0.903 0.0713 0.8171 0.8171 109 mph 180 degree with No Ice 108.05 0.903 0.0713 0.8171 0.8171 109 mph 210 degree with No Ice 59.75 0.283 0.0298 0.7490 0.7496 109 mph 210 degree with No Ice 65.13 0.339 0.0288 0.5809 0.5837 109 mph 210 degree with No Ice 74.88 0.450 0.0349 0.6773 0.6808 109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8088 109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8088 109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8088 109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8088 109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8088 109 mph 210 degree with No Ice 99.75 0.792 0.0420 0.8908 0.8916 109 mph 210 degree with No Ice 108.05 0.911 0.0416 0.8229 0.8238 109 mph 240 degree with No Ice 59.75 0.291 0.0494 0.8013 0.8013 109 mph 240 degree with No Ice 59.75 0.291 0.0494 0.8013 0.8013 109 mph 240 degree with No Ice 74.88 0.462 0.0591 0.6861 0.6886 109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9405 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 240 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 240 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 109.05 0.0657 0.0766 0.0081 0.0081 0.0081 0.0081 109 mph 300 degree with No Ice 109.05 0.0081 0.0081 0.0081 0.0081 0.0081 109 mph 300 degree with N		99.75		0.0699		
109 mph 180 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 180 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 180 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 180 degree with No Ice 88.05 0.620 0.0715 0.7991 0.8013 109 mph 180 degree with No Ice 89.75 0.785 0.0716 0.8961 0.8961 109 mph 180 degree with No Ice 99.75 0.785 0.0716 0.8961 0.8961 109 mph 180 degree with No Ice 99.75 0.785 0.0716 0.8961 0.8961 109 mph 210 degree with No Ice 59.75 0.283 0.0298 0.7490 0.7496 109 mph 210 degree with No Ice 65.13 0.339 0.0288 0.5809 0.5837 109 mph 210 degree with No Ice 74.88 0.450 0.0349 0.6773 0.6808 109 mph 210 degree with No Ice 79.75 0.511 0.0420 0.8974 0.8984 109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8088 109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8088 109 mph 210 degree with No Ice 99.75 0.792 0.0420 0.8908 0.8916 109 mph 210 degree with No Ice 99.75 0.792 0.0420 0.8908 0.8916 109 mph 240 degree with No Ice 59.75 0.291 0.0446 0.8229 0.8238 109 mph 240 degree with No Ice 65.13 0.348 0.0493 0.5855 0.5875 109 mph 240 degree with No Ice 77.88 0.462 0.0591 0.6861 0.6886 109 mph 240 degree with No Ice 79.75 0.525 0.0689 0.9405 109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 99.75 0.525 0.0689 0.9405 0.9405 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 99.75 0.281 0.0512 0.7572 0.7572 109 mph 300 degree with No Ice 99.75 0.507 0.0716 0.0981 0.9081 109 mph 300 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 77.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph	•					
109 mph 180 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 180 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 180 degree with No Ice 88.05 0.620 0.0715 0.7991 0.8013 109 mph 180 degree with No Ice 99.75 0.785 0.0716 0.8961 0.8961 109 mph 180 degree with No Ice 99.75 0.785 0.0716 0.8961 0.8961 109 mph 180 degree with No Ice 108.05 0.903 0.0713 0.8171 0.8171 109 mph 210 degree with No Ice 59.75 0.283 0.0298 0.7490 0.7496 109 mph 210 degree with No Ice 65.13 0.339 0.0288 0.5809 0.5837 109 mph 210 degree with No Ice 74.88 0.450 0.0349 0.6773 0.6808 109 mph 210 degree with No Ice 79.75 0.511 0.0420 0.8974 0.8984 109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8088 109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8088 109 mph 210 degree with No Ice 99.75 0.792 0.0420 0.8908 0.8916 109 mph 210 degree with No Ice 99.75 0.792 0.0420 0.8908 0.8916 109 mph 240 degree with No Ice 59.75 0.291 0.0440 0.8013 0.8013 109 mph 240 degree with No Ice 55.13 0.348 0.0493 0.5855 0.5875 109 mph 240 degree with No Ice 65.13 0.348 0.0493 0.5855 0.5875 109 mph 240 degree with No Ice 79.75 0.525 0.0689 0.9405 0.9405 109 mph 240 degree with No Ice 88.05 0.641 0.0690 0.8250 0.8280 109 mph 240 degree with No Ice 88.05 0.641 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 99.75 0.525 0.0689 0.9405 0.9405 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 99.75 0.281 0.0512 0.7572 0.7572 109 mph 300 degree with No Ice 65.13 0.336 0.0499 0.5648 0.5670 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.0901 0.9081 0.9081 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.0901 0.9081 0.9081 109 mph 300 degree with No Ice 86.030 0.6657 109 mph 300 degree with No Ice 86.030 0.6657 109 mph 300 degree with No Ice 86.050 0.0714 0.7991 0.8013				0.0512		
109 mph 180 degree with No Ice	•					
109 mph 180 degree with No Ice 99.75 0.785 0.0715 0.7991 0.8013 109 mph 180 degree with No Ice 99.75 0.785 0.0716 0.8961 0.8961 109 mph 180 degree with No Ice 108.05 0.903 0.0713 0.8171 0.8171 109 mph 210 degree with No Ice 59.75 0.283 0.0298 0.7490 0.7496 109 mph 210 degree with No Ice 65.13 0.339 0.0288 0.5809 0.5837 109 mph 210 degree with No Ice 74.88 0.450 0.0349 0.6773 0.6808 109 mph 210 degree with No Ice 79.75 0.511 0.0420 0.8974 0.8984 109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8088 109 mph 210 degree with No Ice 89.75 0.792 0.0420 0.8908 0.8916 109 mph 210 degree with No Ice 108.05 0.911 0.0416 0.8229 0.8238 109 mph 240 degree with No Ice 108.05 0.911 0.0416 0.8229 0.8238 109 mph 240 degree with No Ice 59.75 0.291 0.0494 0.8013 0.8013 0.8013 0.9013 0.9014 0.90494 0.8013 0.8013 0.8013 0.9014 0.90494 0.8014		74.88	0.447	0.0601		0.6657
109 mph 180 degree with No Ice 108.05 0.903 0.0713 0.8171 0.8171 109 mph 180 degree with No Ice 108.05 0.903 0.0713 0.8171 0.8171 109 mph 210 degree with No Ice 59.75 0.283 0.0298 0.7490 0.7496 109 mph 210 degree with No Ice 65.13 0.339 0.0288 0.5809 0.5837 109 mph 210 degree with No Ice 74.88 0.450 0.0349 0.6773 0.6808 109 mph 210 degree with No Ice 79.75 0.511 0.0420 0.8974 0.8984 109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8088 109 mph 210 degree with No Ice 99.75 0.792 0.0420 0.8908 0.8916 109 mph 240 degree with No Ice 108.05 0.911 0.0416 0.8229 0.8238 109 mph 240 degree with No Ice 59.75 0.291 0.0494 0.8013 0.8013 109 mph 240 degree with No Ice 65.13 0.348 0.0493 0.5855 0.5875 109 mph 240 degree with No Ice 65.13 0.348 0.0493 0.5855 0.5875 109 mph 240 degree with No Ice 79.75 0.525 0.0689 0.9405 0.9405 0.9405 109 mph 240 degree with No Ice 79.75 0.525 0.0689 0.9405 0.9405 109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 65.13 0.336 0.0499 0.5648 0.5670 109 mph 300 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 79.75 0.550 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081	•					
109 mph 180 degree with No Ice 108.05 0.903 0.0713 0.8171 0.8171 109 mph 210 degree with No Ice 59.75 0.283 0.0298 0.7490 0.7496 109 mph 210 degree with No Ice 65.13 0.339 0.0288 0.5809 0.5837 109 mph 210 degree with No Ice 74.88 0.450 0.0349 0.6773 0.6808 109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8984 109 mph 210 degree with No Ice 99.75 0.792 0.0420 0.8908 0.8916 109 mph 240 degree with No Ice 108.05 0.911 0.0416 0.8229 0.8238 109 mph 240 degree with No Ice 65.13 0.348 0.0493 0.5855 0.5875 109 mph 240 degree with No Ice 65.13 0.348 0.0493 0.5855 0.5875 109 mph 240 degree with No Ice 74.88 0.462 0.0591 0.6861 0.6886 109 mph 240 degree with No Ice 79.75 0.525 0.0689 0.9405 0.9405 109 mph 240 degree with No Ice 88.05 0.641 0.0696		88.05		0.0715	0.7991	0.8013
109 mph 210 degree with No Ice	•					
109 mph 210 degree with No Ice 65.13 0.339 0.0288 0.5809 0.5837 109 mph 210 degree with No Ice 74.88 0.450 0.0349 0.6773 0.6808 109 mph 210 degree with No Ice 79.75 0.511 0.0420 0.8974 0.8984 109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8088 109 mph 210 degree with No Ice 108.05 0.911 0.0420 0.8908 0.8916 109 mph 240 degree with No Ice 108.05 0.911 0.0416 0.8229 0.8238 109 mph 240 degree with No Ice 59.75 0.291 0.0494 0.8013 0.8013 109 mph 240 degree with No Ice 65.13 0.348 0.0493 0.5855 0.5875 109 mph 240 degree with No Ice 74.88 0.462 0.0591 0.6861 0.6886 109 mph 240 degree with No Ice 79.75 0.525 0.0689 0.9405 0.9405 109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 99.75 0.812 0.0690	•					
109 mph 210 degree with No Ice 74.88 0.450 0.0349 0.6773 0.6808 109 mph 210 degree with No Ice 79.75 0.511 0.0420 0.8974 0.8984 109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8088 109 mph 210 degree with No Ice 99.75 0.792 0.0420 0.8908 0.8916 109 mph 210 degree with No Ice 108.05 0.911 0.0416 0.8229 0.8238 109 mph 240 degree with No Ice 59.75 0.291 0.0494 0.8013 0.8013 109 mph 240 degree with No Ice 65.13 0.348 0.0493 0.5855 0.5875 109 mph 240 degree with No Ice 74.88 0.462 0.0591 0.6861 0.6886 109 mph 240 degree with No Ice 79.75 0.525 0.0689 0.9405 0.9405 109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 59.75 0.281 0.0499 0.5648 0.5670 109 mph 300 degree with No Ice 65.13 0.336 0.0499 0.5648 0.5670 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081	. •					
109 mph 210 degree with No Ice	, ,					
109 mph 210 degree with No Ice 88.05 0.625 0.0417 0.8054 0.8088 109 mph 210 degree with No Ice 99.75 0.792 0.0420 0.8908 0.8916 109 mph 210 degree with No Ice 108.05 0.911 0.0416 0.8229 0.8238 109 mph 240 degree with No Ice 59.75 0.291 0.0494 0.8013 0.8013 109 mph 240 degree with No Ice 65.13 0.348 0.0493 0.5855 0.5875 109 mph 240 degree with No Ice 74.88 0.462 0.0591 0.6861 0.6886 109 mph 240 degree with No Ice 79.75 0.525 0.0689 0.9405 0.9405 109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 59.75 0.281 0.0512 0.7572 0.7572 109 mph 300 degree with No Ice 65.13 0.336 0.0499	•					
109 mph 210 degree with No Ice 99.75 0.792 0.0420 0.8908 0.8916 109 mph 210 degree with No Ice 108.05 0.911 0.0416 0.8229 0.8238 109 mph 240 degree with No Ice 59.75 0.291 0.0494 0.8013 0.8013 109 mph 240 degree with No Ice 65.13 0.348 0.0493 0.5855 0.5875 109 mph 240 degree with No Ice 74.88 0.462 0.0591 0.6861 0.6886 109 mph 240 degree with No Ice 79.75 0.525 0.0689 0.9405 0.9405 109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 59.75 0.281 0.0512 0.7572 0.7572 109 mph 300 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 88.05 0.620 0.0714	•					
109 mph 210 degree with No Ice 108.05 0.911 0.0416 0.8229 0.8238 109 mph 240 degree with No Ice 59.75 0.291 0.0494 0.8013 0.8013 109 mph 240 degree with No Ice 65.13 0.348 0.0493 0.5855 0.5875 109 mph 240 degree with No Ice 74.88 0.462 0.0591 0.6861 0.6886 109 mph 240 degree with No Ice 79.75 0.525 0.0689 0.9405 0.9405 109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 300 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 59.75 0.281 0.0512 0.7572 0.7572 109 mph 300 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 88.05 0.620 0.0714						
109 mph 240 degree with No Ice 59.75 0.291 0.0494 0.8013 0.8013 109 mph 240 degree with No Ice 65.13 0.348 0.0493 0.5855 0.5875 109 mph 240 degree with No Ice 74.88 0.462 0.0591 0.6861 0.6886 109 mph 240 degree with No Ice 79.75 0.525 0.0689 0.9405 0.9405 109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 300 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 59.75 0.281 0.0512 0.7572 0.7572 109 mph 300 degree with No Ice 65.13 0.336 0.0499 0.5648 0.5670 109 mph 300 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 88.05 0.620 0.0714 0	, ,					
109 mph 240 degree with No Ice 65.13 0.348 0.0493 0.5855 0.5875 109 mph 240 degree with No Ice 74.88 0.462 0.0591 0.6861 0.6886 109 mph 240 degree with No Ice 79.75 0.525 0.0689 0.9405 0.9405 109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 59.75 0.281 0.0512 0.7572 0.7572 109 mph 300 degree with No Ice 65.13 0.336 0.0499 0.5648 0.5670 109 mph 300 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 88.05 0.620 0.0714 0.7991 0.8013	•					
109 mph 240 degree with No Ice 74.88 0.462 0.0591 0.6861 0.6886 109 mph 240 degree with No Ice 79.75 0.525 0.0689 0.9405 0.9405 109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 59.75 0.281 0.0512 0.7572 0.7572 109 mph 300 degree with No Ice 65.13 0.336 0.0499 0.5648 0.5670 109 mph 300 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 88.05 0.620 0.0714 0.7991 0.8013						
109 mph 240 degree with No Ice 79.75 0.525 0.0689 0.9405 0.9405 109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 59.75 0.281 0.0512 0.7572 0.7572 109 mph 300 degree with No Ice 65.13 0.336 0.0499 0.5648 0.5670 109 mph 300 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 88.05 0.620 0.0714 0.7991 0.8013	. •					
109 mph 240 degree with No Ice 88.05 0.641 0.0696 0.8250 0.8280 109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 59.75 0.281 0.0512 0.7572 0.7572 109 mph 300 degree with No Ice 65.13 0.336 0.0499 0.5648 0.5670 109 mph 300 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 88.05 0.620 0.0714 0.7991 0.8013	•					
109 mph 240 degree with No Ice 99.75 0.812 0.0690 0.9254 0.9254 109 mph 240 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 59.75 0.281 0.0512 0.7572 0.7572 109 mph 300 degree with No Ice 65.13 0.336 0.0499 0.5648 0.5670 109 mph 300 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 88.05 0.620 0.0714 0.7991 0.8013	•					
109 mph 240 degree with No Ice 108.05 0.935 0.0692 0.8434 0.8448 109 mph 300 degree with No Ice 59.75 0.281 0.0512 0.7572 0.7572 109 mph 300 degree with No Ice 65.13 0.336 0.0499 0.5648 0.5670 109 mph 300 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 88.05 0.620 0.0714 0.7991 0.8013	. •					
109 mph 300 degree with No Ice 59.75 0.281 0.0512 0.7572 0.7572 109 mph 300 degree with No Ice 65.13 0.336 0.0499 0.5648 0.5670 109 mph 300 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 88.05 0.620 0.0714 0.7991 0.8013	. •					
109 mph 300 degree with No Ice 65.13 0.336 0.0499 0.5648 0.5670 109 mph 300 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 88.05 0.620 0.0714 0.7991 0.8013	•					
109 mph 300 degree with No Ice 74.88 0.447 0.0601 0.6630 0.6657 109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 88.05 0.620 0.0714 0.7991 0.8013	•					
109 mph 300 degree with No Ice 79.75 0.507 0.0716 0.9081 0.9081 109 mph 300 degree with No Ice 88.05 0.620 0.0714 0.7991 0.8013						
109 mph 300 degree with No Ice 88.05 0.620 0.0714 0.7991 0.8013	•					
·						
109 mph 300 degree with No Ice 99.75 0.785 0.0715 0.8961 0.8961	•					
	109 mph 300 degree with No Ice	99.75	0.785	0.0715	0.8961	0.8961

Site Name: Raldwinsville NY SOA NY 3/25/2021 1:26:26 PM

Site Name:	Baldwinsville NY SQA, NY	Engineering Number:	13544814_C3_04			3/25/2021 1::
Customer:	T-MOBILE					
109 mph 300	degree with No Ice	108.05	0.903	0.0711	0.8171	0.8171
109 mph 330	degree with No Ice	59.75	0.283	0.0308	0.7489	0.7495
•	degree with No Ice	65.13	0.339	0.0297	0.5809	0.5837
•	degree with No Ice	74.88	0.450	0.0358	0.6773	0.6808
•	degree with No Ice	79.75	0.511	0.0430	0.8974	0.8984
-	degree with No Ice	88.05	0.625	0.0427	0.8054	0.8088
•	•	99.75	0.792		0.8908	
-	degree with No Ice			0.0430		0.8916
•	degree with No Ice	108.05	0.911	0.0427	0.8229	0.8238
-	mal with No Ice (Reduced DL)	59.75	0.290	0.0493	0.7996	0.7996
•	mal with No Ice (Reduced DL)	65.13	0.348	0.0492	0.5840	0.5861
•	mal with No Ice (Reduced DL)	74.88	0.461	0.0590	0.6842	0.6868
109 mph Nor	mal with No Ice (Reduced DL)	79.75	0.524	0.0687	0.9384	0.9384
109 mph Nor	mal with No Ice (Reduced DL)	88.05	0.640	0.0695	0.8226	0.8255
109 mph Nor	mal with No Ice (Reduced DL)	99.75	0.810	0.0689	0.9228	0.9228
109 mph Nor	mal with No Ice (Reduced DL)	108.05	0.933	0.0691	0.8412	0.8423
109 mph 60 d	eg with No Ice (Reduced DL)	59.75	0.280	0.0520	0.7549	0.7549
109 mph 60 d	eg with No Ice (Reduced DL)	65.13	0.336	0.0506	0.5634	0.5656
109 mph 60 d	eg with No Ice (Reduced DL)	74.88	0.446	0.0608	0.6614	0.6641
•	eg with No Ice (Reduced DL)	79.75	0.506	0.0722	0.9050	0.9050
-	leg with No Ice (Reduced DL)	88.05	0.619	0.0720	0.7967	0.7992
•	eg with No Ice (Reduced DL)	99.75	0.783	0.0721	0.8932	0.8932
-	leg with No Ice (Reduced DL)	108.05	0.901	0.0717	0.8146	0.8146
•	leg with No Ice (Reduced DL)	59.75	0.283	-0.0578	0.7477	0.7483
-	• , , ,					
•	eg with No Ice (Reduced DL)	65.13	0.338	-0.0570	0.5795	0.5823
-	eg with No Ice (Reduced DL)	74.88	0.449	-0.0685	0.6757	0.6791
•	eg with No Ice (Reduced DL)	79.75	0.510	-0.0807	0.8954	0.8965
-	eg with No Ice (Reduced DL)	88.05	0.624	-0.0810	0.8029	0.8065
•	eg with No Ice (Reduced DL)	99.75	0.790	-0.0808	0.8879	0.8888
-	eg with No Ice (Reduced DL)	108.05	0.909	-0.0807	0.8204	0.8214
109 mph 120	deg with No Ice (Reduced DL)	59.75	0.290	0.0502	0.7998	0.7998
109 mph 120	deg with No Ice (Reduced DL)	65.13	0.348	0.0500	0.5840	0.5861
109 mph 120	deg with No Ice (Reduced DL)	74.88	0.461	0.0598	0.6843	0.6868
	deg with No Ice (Reduced DL)	79.75	0.524	0.0696	0.9384	0.9384
109 mph 120	deg with No Ice (Reduced DL)	88.05	0.640	0.0703	0.8226	0.8256
109 mph 120	deg with No Ice (Reduced DL)	99.75	0.810	0.0697	0.9228	0.9228
109 mph 120	deg with No Ice (Reduced DL)	108.05	0.933	0.0698	0.8412	0.8423
109 mph 180	deg with No Ice (Reduced DL)	59.75	0.280	0.0510	0.7547	0.7547
109 mph 180	deg with No Ice (Reduced DL)	65.13	0.336	0.0497	0.5634	0.5656
109 mph 180	deg with No Ice (Reduced DL)	74.88	0.446	0.0599	0.6613	0.6640
•	deg with No Ice (Reduced DL)	79.75	0.506	0.0714	0.9050	0.9050
-	deg with No Ice (Reduced DL)	88.05	0.619	0.0712	0.7967	0.7991
	deg with No Ice (Reduced DL)	99.75	0.783	0.0714	0.8932	0.8932
•	deg with No Ice (Reduced DL)	108.05	0.901	0.0710	0.8146	0.8146
-	deg with No Ice (Reduced DL)	59.75	0.283	0.0297	0.7476	0.7482
•	deg with No Ice (Reduced DL)	65.13	0.338	0.0287	0.5795	0.5823
-	deg with No Ice (Reduced DL)	74.88	0.449	0.0347	0.6756	0.6791
•	deg with No Ice (Reduced DL)	79.75	0.510	0.0347	0.8954	0.8964
•	,					
•	deg with No Ice (Reduced DL)	88.05	0.624	0.0416	0.8029	0.8065
•	deg with No Ice (Reduced DL)	99.75	0.790	0.0418	0.8879	0.8887
•	deg with No Ice (Reduced DL)	108.05	0.909	0.0415	0.8204	0.8214
-	deg with No Ice (Reduced DL)	59.75	0.290	0.0492	0.7998	0.7998
•	deg with No Ice (Reduced DL)	65.13	0.348	0.0491	0.5840	0.5861
	deg with No Ice (Reduced DL)	74.88	0.461	0.0589	0.6843	0.6868
•	deg with No Ice (Reduced DL)	79.75	0.524	0.0687	0.9384	0.9384
-	deg with No Ice (Reduced DL)	88.05	0.640	0.0693	0.8226	0.8256
•	deg with No Ice (Reduced DL)	99.75	0.810	0.0687	0.9228	0.9228
109 mph 240	deg with No Ice (Reduced DL)	108.05	0.933	0.0689	0.8412	0.8423
109 mph 300	deg with No Ice (Reduced DL)	59.75	0.280	0.0510	0.7549	0.7549
109 mph 300	deg with No Ice (Reduced DL)	65.13	0.336	0.0497	0.5634	0.5656
109 mph 300	deg with No Ice (Reduced DL)	74.88	0.446	0.0598	0.6614	0.6641
109 mph 300	deg with No Ice (Reduced DL)	79.75	0.506	0.0713	0.9050	0.9050
	deg with No Ice (Reduced DL)	88.05	0.619	0.0711	0.7967	0.7992
	- , ,					

Site Name: Baldwinsville NY SQA, NY Engineering Number: 13544814_C3_04 3/25/2021 1:26:26 PM

Customer: I-WOBILE	Customer:	T-MOBILE
--------------------	-----------	----------

Customer: T-MOBILE					
109 mph 300 deg with No Ice (Reduced DL)	99.75	0.783	0.0712	0.8932	0.8932
109 mph 300 deg with No Ice (Reduced DL)	108.05	0.901	0.0708	0.8146	0.8146
109 mph 330 deg with No Ice (Reduced DL)	59.75	0.283	0.0307	0.7475	0.7481
109 mph 330 deg with No Ice (Reduced DL)	65.13	0.338	0.0296	0.5795	0.5823
109 mph 330 deg with No Ice (Reduced DL)	74.88	0.449	0.0357	0.6756	0.6791
109 mph 330 deg with No Ice (Reduced DL)	79.75	0.510	0.0428	0.8954	0.8964
109 mph 330 deg with No Ice (Reduced DL)	88.05	0.624	0.0426	0.8029	0.8065
109 mph 330 deg with No Ice (Reduced DL)	99.75	0.790	0.0428	0.8879	0.8887
109 mph 330 deg with No Ice (Reduced DL)	108.05	0.909	0.0425	0.8204	0.8214
40 mph Normal with 1.50 in Radial Ice	59.75 65.42	0.070	0.0071	0.1867	0.1867
40 mph Normal with 1.50 in Radial Ice	65.13	0.084	0.0062 0.0073	0.1391	0.1393
40 mph Normal with 1.50 in Radial Ice 40 mph Normal with 1.50 in Radial Ice	74.88 79.75	0.111 0.126	0.0073	0.1622 0.2131	0.1623 0.2131
40 mph Normal with 1.50 in Radial Ice	88.05	0.120	0.0032	0.1950	0.1952
40 mph Normal with 1.50 in Radial Ice	99.75	0.193	0.0069	0.2135	0.1332
40 mph Normal with 1.50 in Radial Ice	108.05	0.222	0.0064	0.1980	0.1981
40 mph 60 deg with 1.50 in Radial Ice	59.75	0.070	0.0073	0.1920	0.1920
40 mph 60 deg with 1.50 in Radial Ice	65.13	0.083	0.0063	0.1363	0.1365
40 mph 60 deg with 1.50 in Radial Ice	74.88	0.109	0.0074	0.1598	0.1600
40 mph 60 deg with 1.50 in Radial Ice	79.75	0.124	0.0093	0.2252	0.2252
40 mph 60 deg with 1.50 in Radial Ice	88.05	0.151	0.0083	0.1938	0.1938
40 mph 60 deg with 1.50 in Radial Ice	99.75	0.191	0.0070	0.2154	0.2154
40 mph 60 deg with 1.50 in Radial Ice	108.05	0.219	0.0064	0.1965	0.1965
40 mph 90 deg with 1.50 in Radial Ice	59.75	0.070	-0.0082	0.1852	0.1852
40 mph 90 deg with 1.50 in Radial Ice	65.13	0.083	-0.0071	0.1399	0.1401
40 mph 90 deg with 1.50 in Radial Ice	74.88	0.109	-0.0084	0.1625	0.1627
40 mph 90 deg with 1.50 in Radial Ice	79.75	0.125	-0.0106	0.2206	0.2207
40 mph 90 deg with 1.50 in Radial Ice	88.05	0.152	-0.0095	0.1941	0.1941
40 mph 90 deg with 1.50 in Radial Ice	99.75	0.191	-0.0080	0.2130	0.2131
40 mph 90 deg with 1.50 in Radial Ice	108.05	0.220	-0.0074	0.1968	0.1968
40 mph 120 deg with 1.50 in Radial Ice	59.75	0.070	0.0073	0.1868	0.1868
40 mph 120 deg with 1.50 in Radial Ice	65.13	0.084	0.0063	0.1391	0.1393
40 mph 120 deg with 1.50 in Radial Ice	74.88 79.75	0.111 0.126	0.0074	0.1622 0.2131	0.1623 0.2131
40 mph 120 deg with 1.50 in Radial Ice			0.0093		
40 mph 120 deg with 1.50 in Radial Ice 40 mph 120 deg with 1.50 in Radial Ice	88.05 99.75	0.153 0.193	0.0083 0.0070	0.1950 0.2135	0.1952 0.2135
40 mph 120 deg with 1.50 in Radial Ice	108.05	0.222	0.0065	0.1980	0.1982
40 mph 180 deg with 1.50 in Radial Ice	59.75	0.070	0.0071	0.1920	0.1920
40 mph 180 deg with 1.50 in Radial Ice	65.13	0.083	0.0061	0.1363	0.1365
40 mph 180 deg with 1.50 in Radial Ice	74.88	0.109	0.0072	0.1598	0.1600
40 mph 180 deg with 1.50 in Radial Ice	79.75	0.124	0.0092	0.2252	0.2252
40 mph 180 deg with 1.50 in Radial Ice	88.05	0.151	0.0082	0.1938	0.1938
40 mph 180 deg with 1.50 in Radial Ice	99.75	0.191	0.0069	0.2154	0.2154
40 mph 180 deg with 1.50 in Radial Ice	108.05	0.219	0.0064	0.1965	0.1965
40 mph 210 deg with 1.50 in Radial Ice	59.75	0.070	0.0041	0.1852	0.1852
40 mph 210 deg with 1.50 in Radial Ice	65.13	0.083	0.0036	0.1399	0.1401
40 mph 210 deg with 1.50 in Radial Ice	74.88	0.109	0.0042	0.1625	0.1627
40 mph 210 deg with 1.50 in Radial Ice	79.75	0.125	0.0053	0.2206	0.2207
40 mph 210 deg with 1.50 in Radial Ice	88.05	0.152	0.0047	0.1941	0.1941
40 mph 210 deg with 1.50 in Radial Ice	99.75	0.191	0.0040	0.2130	0.2131
40 mph 210 deg with 1.50 in Radial Ice	108.05	0.220	0.0037	0.1968	0.1968
40 mph 240 deg with 1.50 in Radial Ice	59.75 65.42	0.070	0.0072	0.1868	0.1868
40 mph 240 deg with 1.50 in Radial Ice	65.13	0.084	0.0062	0.1391	0.1393
40 mph 240 deg with 1.50 in Radial Ice	74.88 79.75	0.111	0.0073	0.1622	0.1623
40 mph 240 deg with 1.50 in Radial Ice 40 mph 240 deg with 1.50 in Radial Ice	79.75 88.05	0.126 0.153	0.0092	0.2131 0.1950	0.2131 0.1952
40 mph 240 deg with 1.50 in Radial Ice	99.75	0.153	0.0083 0.0070	0.1950	0.1952
40 mph 240 deg with 1.50 in Radial Ice	108.05	0.193	0.0070	0.1980	0.1982
40 mph 300 deg with 1.50 in Radial Ice	59.75	0.222	0.0072	0.1980	0.1902
40 mph 300 deg with 1.50 in Radial Ice	65.13	0.083	0.0061	0.1363	0.1365
40 mph 300 deg with 1.50 in Radial Ice	74.88	0.109	0.0073	0.1598	0.1600
40 mph 300 deg with 1.50 in Radial Ice	79.75	0.124	0.0092	0.2252	0.2252
· •					

Site Number: 413161	Code:	ANSI/TIA-222-H	© 20	07 - 2021 by AT	C IP LLC. All rights res	erved.
Site Name: Baldwinsville NY SQA, NY	Engineering Number:	13544814_C3_04			3/25/2021 1:26:26	PM
Customer: T-MOBILE						
40 mph 300 deg with 1.50 in Radial Ice	88.05	0.151	0.0082	0.1938	0.1938	
40 mph 300 deg with 1.50 in Radial Ice	99.75	0.191	0.0069	0.2154	0.2154	
40 mph 300 deg with 1.50 in Radial Ice	108.05	0.219	0.0064	0.1965	0.1965	
40 mph 330 deg with 1.50 in Radial Ice	59.75	0.070	0.0042	0.1852	0.1852	
40 mph 330 deg with 1.50 in Radial Ice	65.13	0.083	0.0036	0.1399	0.1401	
40 mph 330 deg with 1.50 in Radial Ice 40 mph 330 deg with 1.50 in Radial Ice	74.88 79.75	0.109 0.125	0.0042 0.0054	0.1625 0.2206	0.1627 0.2207	
40 mph 330 deg with 1.50 in Radial Ice	88.05	0.152	0.0034	0.1941	0.1941	
40 mph 330 deg with 1.50 in Radial Ice	99.75	0.191	0.0040	0.2130	0.2131	
40 mph 330 deg with 1.50 in Radial Ice	108.05	0.220	0.0037	0.1968	0.1968	
Seismic Normal M1	59.75	0.013	0.0011	0.0330	0.0330	
Seismic Normal M1	65.13	0.016	0.0010	0.0277	0.0277	
Seismic Normal M1	74.88	0.021	0.0011	0.0327	0.0327	
Seismic Normal M1 Seismic Normal M1	79.75 88.05	0.024 0.030	0.0014 0.0012	0.0440 0.0411	0.0440 0.0411	
Seismic Normal M1	99.75	0.038	0.0009	0.0478	0.0478	
Seismic Normal M1	108.05	0.044	0.0008	0.0433	0.0433	
Seismic 60 deg M1	59.75	0.012	0.0011	0.0363	0.0363	
Seismic 60 deg M1	65.13	0.015	0.0009	0.0267	0.0268	
Seismic 60 deg M1	74.88	0.020	0.0010	0.0316	0.0316	
Seismic 60 deg M1	79.75	0.023	0.0014	0.0467	0.0467	
Seismic 60 deg M1 Seismic 60 deg M1	88.05 99.75	0.029 0.037	0.0011 0.0008	0.0405 0.0476	0.0405 0.0476	
Seismic 60 deg M1	108.05	0.043	0.0006	0.0470	0.0470	
Seismic 90 deg M1	59.75	0.013	-0.0013	0.0358	0.0358	
Seismic 90 deg M1	65.13	0.016	-0.0011	0.0281	0.0281	
Seismic 90 deg M1	74.88	0.021	-0.0012	0.0331	0.0331	
Seismic 90 deg M1	79.75	0.024	-0.0017	0.0468	0.0468	
Seismic 90 deg M1	88.05	0.030	-0.0014	0.0415	0.0415	
Seismic 90 deg M1 Seismic 90 deg M1	99.75 108.05	0.038 0.044	-0.0010 -0.0009	0.0481 0.0434	0.0481 0.0434	
Seismic 30 deg M1	59.75	0.013	0.0011	0.0321	0.0321	
Seismic 120 deg M1	65.13	0.015	0.0009	0.0270	0.0270	
Seismic 120 deg M1	74.88	0.020	0.0010	0.0319	0.0319	
Seismic 120 deg M1	79.75	0.023	0.0014	0.0428	0.0429	
Seismic 120 deg M1	88.05	0.029	0.0011	0.0400	0.0400	
Seismic 120 deg M1 Seismic 120 deg M1	99.75 108.05	0.037 0.043	0.0008 0.0006	0.0464 0.0421	0.0464 0.0421	
Seismic 120 deg M1	59.75	0.043	0.0000	0.0421	0.0421	
Seismic 180 deg M1	65.13	0.015	0.0011	0.0275	0.0275	
Seismic 180 deg M1	74.88	0.021	0.0011	0.0325	0.0325	
Seismic 180 deg M1	79.75	0.024	0.0015	0.0480	0.0480	
Seismic 180 deg M1	88.05	0.029	0.0012	0.0416	0.0416	
Seismic 180 deg M1 Seismic 180 deg M1	99.75 108.05	0.038 0.044	0.0009 0.0008	0.0489 0.0434	0.0489 0.0434	
Seismic 100 deg M1	59.75	0.013	0.0006	0.0454	0.0350	
Seismic 210 deg M1	65.13	0.015	0.0005	0.0273	0.0274	
Seismic 210 deg M1	74.88	0.020	0.0006	0.0322	0.0322	
Seismic 210 deg M1	79.75	0.023	0.0008	0.0455	0.0455	
Seismic 210 deg M1	88.05	0.029	0.0006	0.0403	0.0404	
Seismic 210 deg M1	99.75	0.037	0.0004	0.0468	0.0468	
Seismic 210 deg M1 Seismic 240 deg M1	108.05 59.75	0.043 0.013	0.0004 0.0011	0.0422 0.0321	0.0422 0.0321	
Seismic 240 deg M1	65.13	0.015	0.0011	0.0321	0.0321	
Seismic 240 deg M1	74.88	0.020	0.0010	0.0319	0.0319	
Seismic 240 deg M1	79.75	0.023	0.0014	0.0428	0.0429	
Seismic 240 deg M1	88.05	0.029	0.0011	0.0400	0.0400	
Seismic 240 deg M1	99.75	0.037	0.0008	0.0464	0.0464	
Seismic 240 deg M1	108.05	0.043	0.0006	0.0421	0.0421	
Seismic 300 deg M1 Seismic 300 deg M1	59.75 65.13	0.012 0.015	0.0011 0.0009	0.0363 0.0267	0.0363 0.0268	
Seismic 300 deg M1	74.88	0.015	0.0009	0.0267	0.0266	
55.5.mo 000 40g m i	17.00	0.020	0.0010	5.0510	0.0010	

Site Name: Baldwinsville NY SOA NY 3/25/2021 1:26:26 PM

Site Name:	Baldwinsville NY SQA, NY	Engineering Number:	13544814_C3_04			3/25/2021 1::
Customer:	T-MOBILE					
Seismic 300 d	deg M1	79.75	0.023	0.0014	0.0467	0.0467
Seismic 300 d	_	88.05	0.029	0.0011	0.0405	0.0405
Seismic 300 d	•	99.75	0.037	0.0008	0.0476	0.0476
Seismic 300 d	•	108.05	0.043	0.0006	0.0422	0.0422
Seismic 330 d	•	59.75	0.013	0.0006	0.0350	0.0350
Seismic 330 d	_	65.13	0.015	0.0005	0.0273	0.0274
Seismic 330 d	•	74.88	0.020	0.0006	0.0322	0.0322
Seismic 330 d	•	79.75	0.023	0.0008	0.0455	0.0455
Seismic 330 d		88.05	0.029	0.0006	0.0403	0.0404
Seismic 330 d	_	99.75	0.037	0.0004	0.0468	0.0468
Seismic 330 d	•	108.05	0.043	0.0004	0.0422	0.0422
	uced DL) Normal M1	59.75	0.013	0.0011	0.0335	0.0335
	uced DL) Normal M1	65.13	0.016	0.0010	0.0276	0.0276
	uced DL) Normal M1	74.88	0.021	0.0011	0.0326	0.0326
•	uced DL) Normal M1	79.75	0.024	0.0014	0.0435	0.0435
•	uced DL) Normal M1	88.05	0.029	0.0012	0.0409	0.0409
•	uced DL) Normal M1	99.75	0.038	0.0009	0.0478	0.0478
•	uced DL) Normal M1	108.05	0.044	0.0008	0.0432	0.0432
•	uced DL) 60 deg M1	59.75	0.012	0.0011	0.0356	0.0356
	uced DL) 60 deg M1	65.13	0.015	0.0009	0.0267	0.0267
•	uced DL) 60 deg M1	74.88	0.020	0.0010	0.0316	0.0316
	uced DL) 60 deg M1	79.75	0.023	0.0014	0.0458	0.0458
•	uced DL) 60 deg M1	88.05	0.029	0.0011	0.0401	0.0401
•	uced DL) 60 deg M1	99.75	0.037	0.0008	0.0473	0.0473
•	uced DL) 60 deg M1	108.05	0.043	0.0006	0.0420	0.0420
-	uced DL) 90 deg M1	59.75	0.013	-0.0013	0.0352	0.0352
•	uced DL) 90 deg M1	65.13	0.015	-0.0011	0.0280	0.0280
-	uced DL) 90 deg M1	74.88	0.021	-0.0012	0.0330	0.0330
•	uced DL) 90 deg M1	79.75	0.024	-0.0017	0.0460	0.0460
-	uced DL) 90 deg M1	88.05	0.029	-0.0014	0.0411	0.0411
•	uced DL) 90 deg M1	99.75	0.038	-0.0010	0.0478	0.0478
-	uced DL) 90 deg M1	108.05	0.044	-0.0009	0.0432	0.0432
	uced DL) 120 deg M1	59.75	0.013	0.0011	0.0326	0.0326
	uced DL) 120 deg M1	65.13	0.015	0.0009	0.0269	0.0269
	uced DL) 120 deg M1	74.88	0.020	0.0010	0.0317	0.0318
•	uced DL) 120 deg M1	79.75	0.023	0.0014	0.0423	0.0423
	uced DL) 120 deg M1	88.05	0.029	0.0011	0.0398	0.0398
Seismic (Red	uced DL) 120 deg M1	99.75	0.037	0.0008	0.0465	0.0465
Seismic (Red	uced DL) 120 deg M1	108.05	0.043	0.0006	0.0420	0.0420
Seismic (Red	uced DL) 180 deg M1	59.75	0.013	0.0011	0.0365	0.0365
Seismic (Red	uced DL) 180 deg M1	65.13	0.015	0.0009	0.0274	0.0274
Seismic (Red	uced DL) 180 deg M1	74.88	0.021	0.0011	0.0324	0.0325
Seismic (Red	uced DL) 180 deg M1	79.75	0.024	0.0014	0.0471	0.0471
Seismic (Red	uced DL) 180 deg M1	88.05	0.029	0.0012	0.0412	0.0412
Seismic (Red	uced DL) 180 deg M1	99.75	0.038	0.0009	0.0486	0.0486
Seismic (Red	uced DL) 180 deg M1	108.05	0.044	0.0008	0.0432	0.0432
Seismic (Red	uced DL) 210 deg M1	59.75	0.012	0.0006	0.0343	0.0343
Seismic (Red	uced DL) 210 deg M1	65.13	0.015	0.0005	0.0273	0.0273
Seismic (Red	uced DL) 210 deg M1	74.88	0.020	0.0006	0.0321	0.0321
•	uced DL) 210 deg M1	79.75	0.023	0.0008	0.0447	0.0448
Seismic (Red	uced DL) 210 deg M1	88.05	0.029	0.0006	0.0400	0.0400
•	uced DL) 210 deg M1	99.75	0.037	0.0004	0.0465	0.0465
Seismic (Red	uced DL) 210 deg M1	108.05	0.043	0.0004	0.0420	0.0420
•	uced DL) 240 deg M1	59.75	0.013	0.0011	0.0326	0.0326
Seismic (Red	uced DL) 240 deg M1	65.13	0.015	0.0009	0.0269	0.0269
•	uced DL) 240 deg M1	74.88	0.020	0.0010	0.0317	0.0318
•	uced DL) 240 deg M1	79.75	0.023	0.0014	0.0423	0.0423
•	uced DL) 240 deg M1	88.05	0.029	0.0011	0.0398	0.0398
•	uced DL) 240 deg M1	99.75	0.037	0.0008	0.0465	0.0465
	uced DL) 240 deg M1	108.05	0.043	0.0006	0.0420	0.0420
-	uced DL) 300 deg M1	59.75	0.012	0.0011	0.0356	0.0356
Seismic (Red	uced DL) 300 deg M1	65.13	0.015	0.0009	0.0267	0.0267

Site Name: Baldwinsville NY SQA, NY Engineering Number: 13544814_C3_04 3/25/2021 1:26:26 PM

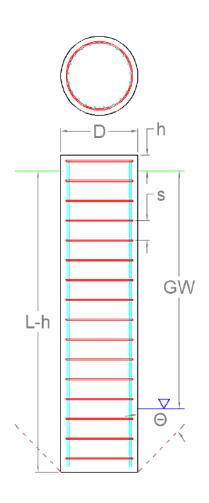
Balawiii Stille IVI OQA, IVI	Engineering Number:	10044014_00_04			0/20/2021 1
Customer: T-MOBILE					
Seismic (Reduced DL) 300 deg M1	74.88	0.020	0.0010	0.0316	0.0316
Seismic (Reduced DL) 300 deg M1	79.75	0.023	0.0014	0.0458	0.0458
Seismic (Reduced DL) 300 deg M1	88.05	0.029	0.0011	0.0401	0.0401
Seismic (Reduced DL) 300 deg M1	99.75	0.037	0.0008	0.0473	0.0473
Seismic (Reduced DL) 300 deg M1	108.05	0.043	0.0006	0.0420	0.0420
Seismic (Reduced DL) 330 deg M1	59.75	0.012	0.0006	0.0343	0.0343
Seismic (Reduced DL) 330 deg M1	65.13	0.015	0.0005	0.0273	0.0273
Seismic (Reduced DL) 330 deg M1	74.88	0.020	0.0006	0.0321	0.0321
Seismic (Reduced DL) 330 deg M1	79.75	0.023	8000.0	0.0447	0.0448
Seismic (Reduced DL) 330 deg M1	88.05	0.029	0.0006	0.0400	0.0400
Seismic (Reduced DL) 330 deg M1	99.75	0.037	0.0004	0.0465	0.0465
Seismic (Reduced DL) 330 deg M1	108.05	0.043	0.0004	0.0420	0.0420
Serviceability - 60 mph Wind Normal	59.75	0.087	0.0086	0.2368	0.2368
Serviceability - 60 mph Wind Normal	65.13	0.105	0.0075	0.1760	0.1761
Serviceability - 60 mph Wind Normal	74.88	0.139	0.0088	0.2063	0.2065
Serviceability - 60 mph Wind Normal	79.75	0.158	0.0111	0.2799	0.2799
Serviceability - 60 mph Wind Normal	88.05	0.192	0.0100	0.2476	0.2478
Serviceability - 60 mph Wind Normal	99.75	0.244	0.0084	0.2766	0.2766
Serviceability - 60 mph Wind Normal	108.05	0.280	0.0078	0.2524	0.2525
Serviceability - 60 mph Wind 60 deg	59.75	0.084	0.0086	0.2304	0.2304
Serviceability - 60 mph Wind 60 deg Serviceability - 60 mph Wind 60 deg	65.13	0.101	0.0074	0.1698	0.1700
Serviceability - 60 mph Wind 60 deg	74.88 79.75	0.134 0.152	0.0087 0.0111	0.1993 0.2741	0.1995 0.2741
Serviceability - 60 mph Wind 60 deg	88.05	0.132	0.0099	0.2440	0.2741
Serviceability - 60 mph Wind 60 deg	99.75	0.235	0.0099	0.2687	0.2687
Serviceability - 60 mph Wind 60 deg	108.05	0.271	0.0077	0.2450	0.2450
Serviceability - 60 mph Wind 90 deg	59.75	0.085	-0.0098	0.2239	0.2239
Serviceability - 60 mph Wind 90 deg	65.13	0.102	-0.0085	0.1748	0.1750
Serviceability - 60 mph Wind 90 deg	74.88	0.135	-0.0100	0.2038	0.2041
Serviceability - 60 mph Wind 90 deg	79.75	0.153	-0.0127	0.2704	0.2704
Serviceability - 60 mph Wind 90 deg	88.05	0.187	-0.0114	0.2419	0.2419
Serviceability - 60 mph Wind 90 deg	99.75	0.237	-0.0096	0.2671	0.2671
Serviceability - 60 mph Wind 90 deg	108.05	0.273	-0.0089	0.2468	0.2468
Serviceability - 60 mph Wind 120 deg	59.75	0.087	0.0088	0.2369	0.2369
Serviceability - 60 mph Wind 120 deg	65.13	0.105	0.0076	0.1760	0.1761
Serviceability - 60 mph Wind 120 deg	74.88	0.139	0.0090	0.2063	0.2065
Serviceability - 60 mph Wind 120 deg	79.75	0.158	0.0113	0.2799	0.2799
Serviceability - 60 mph Wind 120 deg	88.05	0.192	0.0101	0.2476	0.2478
Serviceability - 60 mph Wind 120 deg	99.75	0.244	0.0085	0.2766	0.2766
Serviceability - 60 mph Wind 120 deg	108.05	0.280	0.0079	0.2524	0.2525
Serviceability - 60 mph Wind 180 deg	59.75	0.084	0.0084	0.2304	0.2304
Serviceability - 60 mph Wind 180 deg	65.13	0.101	0.0072	0.1698	0.1700
Serviceability - 60 mph Wind 180 deg Serviceability - 60 mph Wind 180 deg	74.88 79.75	0.134 0.152	0.0085 0.0110	0.1993 0.2741	0.1995 0.2741
Serviceability - 60 mph Wind 180 deg	88.05	0.186	0.0110	0.2441	0.2741
Serviceability - 60 mph Wind 180 deg	99.75	0.235	0.0033	0.2687	0.2400
Serviceability - 60 mph Wind 180 deg	108.05	0.271	0.0076	0.2450	0.2450
Serviceability - 60 mph Wind 210 deg	59.75	0.085	0.0048	0.2238	0.2239
Serviceability - 60 mph Wind 210 deg	65.13	0.102	0.0042	0.1748	0.1750
Serviceability - 60 mph Wind 210 deg	74.88	0.135	0.0050	0.2038	0.2041
Serviceability - 60 mph Wind 210 deg	79.75	0.153	0.0063	0.2704	0.2704
Serviceability - 60 mph Wind 210 deg	88.05	0.187	0.0056	0.2419	0.2419
Serviceability - 60 mph Wind 210 deg	99.75	0.237	0.0048	0.2671	0.2671
Serviceability - 60 mph Wind 210 deg	108.05	0.273	0.0044	0.2468	0.2468
Serviceability - 60 mph Wind 240 deg	59.75	0.087	0.0086	0.2369	0.2369
Serviceability - 60 mph Wind 240 deg	65.13	0.105	0.0075	0.1760	0.1761
Serviceability - 60 mph Wind 240 deg	74.88	0.139	0.0088	0.2063	0.2065
Serviceability - 60 mph Wind 240 deg	79.75	0.158	0.0112	0.2799	0.2799
Serviceability - 60 mph Wind 240 deg	88.05	0.192	0.0100	0.2476	0.2478
Serviceability - 60 mph Wind 240 deg	99.75	0.244	0.0085	0.2766	0.2766
Serviceability - 60 mph Wind 240 deg	108.05	0.280	0.0078	0.2524	0.2525
Serviceability - 60 mph Wind 300 deg	59.75	0.084	0.0085	0.2304	0.2304

Site Number: 413161	Code:	ANSI/TIA-222-H	© 20	007 - 2021 by AT	C IP LLC. All righ	ts reserved.
Site Name: Baldwinsville NY SQA, N	IY Engineering Number:	13544814_C3_04			3/25/2021 1:2	:6:26 PM
Customer: T-MOBILE						
Serviceability - 60 mph Wind 300 deg	65.13	0.101	0.0073	0.1698	0.1700	
Serviceability - 60 mph Wind 300 deg	74.88	0.134	0.0086	0.1993	0.1995	
Serviceability - 60 mph Wind 300 deg	79.75	0.152	0.0110	0.2741	0.2741	
Serviceability - 60 mph Wind 300 deg	88.05	0.186	0.0098	0.2400	0.2400	
Serviceability - 60 mph Wind 300 deg	99.75	0.235	0.0083	0.2687	0.2687	
Serviceability - 60 mph Wind 300 deg	108.05	0.271	0.0077	0.2450	0.2450	
Serviceability - 60 mph Wind 330 deg	59.75	0.085	0.0050	0.2239	0.2239	
Serviceability - 60 mph Wind 330 deg	65.13	0.102	0.0042	0.1747	0.1750	
Serviceability - 60 mph Wind 330 deg	74.88	0.135	0.0050	0.2038	0.2041	
Serviceability - 60 mph Wind 330 deg	79.75	0.153	0.0064	0.2704	0.2704	
Serviceability - 60 mph Wind 330 deg	88.05	0.187	0.0057	0.2419	0.2419	
Serviceability - 60 mph Wind 330 deg	99.75	0.237	0.0049	0.2671	0.2671	
Serviceability - 60 mph Wind 330 deg	108.05	0.273	0.0045	0.2468	0.2468	

Maximum Reactions Summary

Vertical (kip)				Horizontal (kip)		Moment (kip-ft)			
Anchor Group	DL+WL	DL+WL+IL	UpLift	Shear	DL+WL	DL+WL+IL	DL+WL	DL+WL+IL	
Base	18.39	59.38	107.09	11.45	18.70	4.60	1281.41	311.06	

Asset 413161 v1.0


Pier Foundation Analysis (ANSI/TIA-222-H)

Foundation Analysis Parameters						
Pier Diameter	D	3.00	ft			
Pier Embedment	L-h	22.8	ft			
Pier Height above Ground	Н	0.50	ft			
Water Table Depth [BGL]	GW	8	ft			
Pullout Angle	Θ	30	۰			
Unit Weight of Concrete		150	pcf			
Uplift Skin Friction Factor		0.750				

Reactions					
Moment, M _u	0.0	k-ft			
Shear, V _u	11.5	k			
Axial, P _u	107.1	k			
Uplift, T _u	92.3	k			

Soil Properties							
	Depth t)	Unit Weight	Cohesion	Friction Angle	Ultimate Skin Friction	Ultimate Bearing Pressure	
TOP	BTM	pcf	psf		psf	psf	
0.0	5.0	105	0	0	0	0	
5.0	6.0	105	0	29	675	0	
6.0	8.0	110	0	30	835	0	
8.0	10.0	110	0	31	970	0	
10.0	15.0	125	0	37	1,115	0	
15.0	20.0	130	4,000	0	2,045	0	
20.0	25.0	130	0	40	1,505	0	
25.0	30.0	130	0	40	1,650	38,910	

Soil Strength Capacities			
Volume of Concrete	164.3	ft ³	
Weight of Concrete [Buoyancy Considered]	18.2	k	
Average Soil Unit Weight	78.3	pcf	
Skin Friction Resistance	228.3	k	
Compressive Bearing Resistance	0.0	k	
Pullout Weight [Minus Concrete Weight]	432.3	k	
Uplift Force, T _u	76.0	k	
Nominal Uplift Capacity, $\phi_s T_n$	128.4	k	
T_u/φ_sT_n	59.2%		
Compressive Force, P _u	113.1	k	
Nominal Compressive Capacity, $\phi_s P_n$	171.2	k	
P_u/φ_sP_n	66.1%		
Total Lateral Resistance	914.5	k	
Inflection Point [BGL]	17.0	ft	
Moment at Inflection Point, M _D	200.7	k-ft	
Nominal Moment Capacity, $\phi_s M_n$	2,351.0	k-ft	
M_D/Φ_sM_0	8.5%		

Asset 413161 v1.0

Pier Strength Capacities			
Concrete Compressive Strength, f'c	3,000	psi	
Rebar Size #	6		
Rebar Area (Single)	0.44	in ²	
Rebar Quantity	12		
Rebar Yield Strength, F _y	60	ksi	
Vertical Rebar Clear Cover	3	in	
Tie Rebar Size #	4		
Tie Rebar Area (Single)	0.20	in ²	
Tie Rebar Spacing s	12.0	in	
Tie Rebar Yield Strength, F _y	60	ksi	
Rebar Cage Diameter	28.25	in	
Strength Bending/Tension Reduction Factor, φ_{B}	0.90		
Strength Shear Reduction Factor, φ_{V}	0.75		
Strength Compression Reduction Factor, φ_{C}	0.65		
Steel Elastic Modulus	29,000	ksi	
Design Moment, M _u	70.9	k-ft	
Moment Capacity, $\phi_B M_n$	329.0	k-ft	
M_u / $\phi_B M_n$	21.5%		
Design Shear, V _u	11.5	k	
Shear Capacity, $\phi_V V_n$	111.6	k	
V_u/φ_VV_n	10.3%		
Design Tension, T _u	92.3	k	
Tension Capacity, $\phi_T T_n$	285.1	k	
$T_u / \varphi_T T_n$	32.4%		
Design Compression, P _u	113.1	k	
Compression Capacity, $\phi_P P_n$	1,507.4	k	
$P_u/\phi_P P_n$	7.5%		
Bending Reinforcement Ratio	0.005		
$M_u/\varphi_BM_n + T_u/\varphi_TT_n$	53.9%		

